login
Number T(n,k) of partitions of an n-set with distinct block sizes and maximal block size equal to k; triangle T(n,k), n>=0, ceiling((sqrt(1+8*n)-1)/2)<=k<=n, read by rows.
5

%I #16 Feb 04 2017 10:35:53

%S 1,1,1,3,1,4,1,10,5,1,60,15,6,1,140,21,7,1,280,224,28,8,1,1260,630,

%T 336,36,9,1,12600,3780,1050,480,45,10,1,34650,7392,1650,660,55,11,1,

%U 110880,74844,12672,2475,880,66,12,1,360360,276276,140712,20592,3575,1144,78,13,1

%N Number T(n,k) of partitions of an n-set with distinct block sizes and maximal block size equal to k; triangle T(n,k), n>=0, ceiling((sqrt(1+8*n)-1)/2)<=k<=n, read by rows.

%H Alois P. Heinz, <a href="/A262072/b262072.txt">Rows n = 0..200, flattened</a>

%e Triangle T(n,k) begins:

%e : 1;

%e : 1;

%e : 1;

%e : 3, 1;

%e : 4, 1;

%e : 10, 5, 1;

%e : 60, 15, 6, 1;

%e : 140, 21, 7, 1;

%e : 280, 224, 28, 8, 1;

%e : 1260, 630, 336, 36, 9, 1;

%e : 12600, 3780, 1050, 480, 45, 10, 1;

%p b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,`if`(n=0, 1,

%p b(n, i-1) +`if`(i>n, 0, binomial(n, i)*b(n-i, i-1))))

%p end:

%p T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):

%p seq(seq(T(n,k), k=ceil((sqrt(1+8*n)-1)/2)..n), n=0..14);

%t b[n_, i_] := b[n, i] = If[i*(i+1)/2<n, 0, If[n==0, 1, b[n, i-1] + If[i>n, 0, Binomial[n, i]*b[n-i, i-1]]]]; T[n_, k_] := b[n, k] - If[k == 0, 0, b[n, k-1]]; Table[T[n, k], {n, 0, 14}, {k, Ceiling[(Sqrt[1+8*n]-1)/2], n}] // Flatten (* _Jean-François Alcover_, Feb 04 2017, translated from Maple *)

%Y Row sums give A007837.

%Y Column sums give A262073.

%Y Cf. A002024, A262071, A262078 (same read by columns).

%K nonn,tabf

%O 0,4

%A _Alois P. Heinz_, Sep 10 2015