login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ceiling( log_3( binomial(n,2) ) ).
0

%I #16 Sep 08 2022 08:46:13

%S 0,1,2,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,

%T 6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,

%U 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9

%N a(n) = ceiling( log_3( binomial(n,2) ) ).

%C A lower bound on the number of weighings which suffice to determine the counterfeit (heavier) coins in a set of n coins given a balance scale and the information that there are exactly two heavier coins present.

%C Records occur at n=2, 3, 4, 5, 8, 14, 23, 39, 67, 116, 199, 345, 596,...

%H Anping Li, <a href="http://dx.doi.org/10.1016/0097-3165(94)90052-3">Three counterfeit coins problem</a>, J. Comb. Theory A 66 (1994) 93-101 eq. (3).

%H Anping Li, <a href="http://dx.doi.org/10.1016/0012-365X(94)90038-8">On the conjecture at two counterfeit coins</a>, Discr. Math. 133 (1-3) (1994) 301-306

%H Wen An Liu, Qi Min Zhang, Zan Kan Nie, <a href="http://dx.doi.org/10.1016/j.jspi.2005.06.008">Optimal search procedure on coin-weighing problem</a>, J. Statl. Plan. Inf. 136 (2006) 4419-4435.

%H R. Tosic, <a href="http://dx.doi.org/10.1016/0012-365X(83)90123-1">Two counterfeit coins</a>, Discr. Math. 46 (3) (1993) 295-298, eq. (2).

%p seq(ceil(log[3](binomial(n,2))),n=2..120) ;

%t Ceiling[Log[3,Binomial[Range[2,120],2]]] (* _Harvey P. Dale_, Dec 13 2016 *)

%o (PARI) first(m)=vector(m,i,i++;ceil(log(binomial(i,2))/log(3))) \\ _Anders Hellström_, Sep 10 2015

%o (Magma) [Ceiling(Log(3,Binomial(n,2))): n in [2..120]]; // _Bruno Berselli_, Sep 10 2015

%Y Cf. A080342 (single counterfeit coin).

%K nonn,easy

%O 2,3

%A _R. J. Mathar_, Sep 10 2015