login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least integer k such that k^(1/n)/log(k) exceeds 2.
3

%I #15 Oct 23 2015 03:55:25

%S 2,2,4913,463584,58571590,9380523077,1831736082750,423908600424675,

%T 113798703080610442,34848887401383308294,12011778862556061365985,

%U 4609276407921507486293833,1951202873990586514532224545,904205931392036935959059378623

%N Least integer k such that k^(1/n)/log(k) exceeds 2.

%H R. J. Mathar, <a href="/A262060/b262060.txt">Table of n, a(n) for n = 1..45</a>

%t f[n_] := f[n] = Block[{k = f[n - 1]}, While[2 > k^(1/n)/Log[k], k++]; k]; f[1] = 2; Array[f, 6]

%o (PARI) a(n) = {my(k = 2); while(sqrtn(k,n)/log(k) <= 2, k++); k;} \\ _Michel Marcus_, Sep 10 2015

%Y Cf. A084238, A088346, A262058, A262059.

%K nonn

%O 1,1

%A _Robert G. Wilson v_, Sep 09 2015

%E a(14) from _Jon E. Schoenfield_, Sep 12 2015