Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Jun 28 2019 21:41:05
%S 121,703,1541,1729,1891,2465,2821,3281,4961,7381,8401,8911,10585,
%T 12403,15457,15841,16531,18721,19345,23521,24661,28009,29341,30857,
%U 31621,31697,41041,44287,46657,47197,49141,50881,52633,55969,63139,63973,72041,74593,75361
%N Euler pseudoprimes to base 3: composite integers such that abs(3^((n - 1)/2)) == 1 mod n.
%H Amiram Eldar, <a href="/A262051/b262051.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..64 from Daniel Lignon)
%t eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[26000] + 1, eulerPseudoQ[#, 3] &] (* _Michael De Vlieger_, Sep 09 2015, after _Jean-François Alcover_ at A006970 *)
%o (PARI) for(n=1, 1e5, if( Mod(3, (2*n+1))^n == 1 || Mod(3, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ _Altug Alkan_, Oct 11 2015
%Y Cf. A006970 (base 2), this sequence (base 3), A001567 (base 4), A262052 (base 5), A262053 (base 6), A262054 (base 7), A262055 (base 8).
%K nonn
%O 1,1
%A _Daniel Lignon_, Sep 09 2015