login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262006
G.f. satisfies: A(x) = 1+x + x*Sum_{n=-oo..+oo} x^n*A(x)^n * (A(x)^n - x^n)^n.
0
1, 1, 1, 4, 11, 54, 224, 1221, 6506, 37982, 227853, 1436155, 9370157, 63478402, 444856819, 3224349732, 24142103099, 186635429502, 1488745035667, 12246510599338, 103825176789850, 906575491574389, 8147038046590526, 75291889506602676, 714968504199357010, 6970122084115034290, 69699196634887342192
OFFSET
0,4
COMMENTS
Compare to the curious identity: Sum_{n=-oo..+oo} x^n/a^(n^2+n) * (a^n - x^n)^n = 0 for all fixed a.
FORMULA
G.f. satisfies: A(x) = 1+x + x*Sum_{n=-oo..+oo} (x*A(x))^(n^2-n) / (x^n - A(x)^n)^n.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 11*x^4 + 54*x^5 + 224*x^6 + 1221*x^7 +...
such that A(x) = 1 + 2*x + x*N(x) + x*P(x) where
N(x) = Sum_{n<=-1} x^n*A(x)^n * (A(x)^n - x^n)^n,
P(x) = Sum_{n>=1} x^n*A(x)^n * (A(x)^n - x^n)^n;
Equivalently,
N(x) = Sum_{n>=1} (x*A(x))^(n^2-n) / (x^n - A(x)^n)^n,
P(x) = Sum_{n<=-1} (x*A(x))^(n^2-n) / (x^n - A(x)^n)^n,
Explicitly,
N(x) = -1 + 2*x^2 + 2*x^3 + 13*x^4 + 32*x^5 + 199*x^6 + 926*x^7 + 5518*x^8 + 31303*x^9 + 194051*x^10 + 1226544*x^11 + 8123893*x^12 + 55526652*x^13 + 393267242*x^14 + 2876241417*x^15 + 21725489552*x^16 +...
P(x) = x + 2*x^2 + 9*x^3 + 41*x^4 + 192*x^5 + 1022*x^6 + 5580*x^7 + 32464*x^8 + 196550*x^9 + 1242104*x^10 + 8143613*x^11 + 55354509*x^12 + 389330167*x^13 + 2831082490*x^14 + 21265861682*x^15 + 164909939950*x^16 +...
PROG
(PARI) {a(n) = local(A=1+x+x*O(x^n));
for(i=1, n, A=1+x + x*sum(k=-n-1, n+1, x^k*A^k * (A^k-x^k)^k)); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
(PARI) {a(n) = local(A=1+x+x*O(x^n));
for(i=1, n, A=1+x + x*sum(k=-n-1, n+1, (x*A)^(k^2-k) / (x^k-A^k)^k)); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
Sequence in context: A149317 A027042 A051770 * A209110 A363664 A282742
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 21 2015
STATUS
approved