login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable side of the triangles of the (n-1)-th generation (this is the "side to side" version); for the even n-th generation use the "vertex to side" version; a(n) is the number of triangles added in the n-th generation.
8

%I #19 Sep 16 2015 17:13:31

%S 1,3,6,15,12,24,15,33,21,45,39,72,36,78,39,87,45,99,63,126,60,132,63,

%T 141,69,153,87,180,84,186,87,195,93,207,111,234,108,240,111,249,117,

%U 261,135,288,132,294,135,303,141,315,159

%N Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable side of the triangles of the (n-1)-th generation (this is the "side to side" version); for the even n-th generation use the "vertex to side" version; a(n) is the number of triangles added in the n-th generation.

%C See a comment on V-V and V-S at A249246.

%C There are a total of 16 combinations as shown in the table below:

%C +-------------------------------------------------------+

%C | Even n-th version V-V S-V V-S S-S |

%C +-------------------------------------------------------+

%C | Odd n-th version |

%C | V-V A008486 A248969 A261951 A261952 |

%C | S-V A261950 A008486 A008486 A261956 |

%C | V-S A249246 A008486 A008486 A261957 |

%C | S-S A261953 A261954 a(n) A008486 |

%C +-------------------------------------------------------+

%C Note: V-V = vertex to vertex, S-V = side to vertex,

%C V-S = vertex to side, S-S = side to side.

%H Kival Ngaokrajang, <a href="/A261955/a261955.pdf">Illustration of initial terms</a>

%F Conjectures from _Colin Barker_, Sep 10 2015: (Start)

%F a(n) = a(n-2)+a(n-8)-a(n-10) for n>13.

%F G.f.: -(3*x^13+9*x^12-15*x^11-13*x^10-9*x^9-5*x^8-9*x^7-3*x^6-9*x^5-6*x^4-12*x^3-5*x^2-3*x-1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)).

%F (End)

%o (PARI) {e=12; o=24; print1("1, 3, 6, 15, ", e, ", ", o, ", "); for(n=6, 100, if (Mod(n,2)==0, if (Mod(n,8)==6, e=e+3); if (Mod(n,8)==0, e=e+6); if (Mod(n,8)==2, e=e+18); if (Mod(n,8)==4, e=e-3); Print1(e, ", "), if (Mod(n,8)==7, o=o+9); if (Mod(n,8)==1, o=o+12); if (Mod(n,8)==3, o=o+27); if (Mod(n,8)==5, o=o+6); print1(o, ", ")))}

%Y Cf. A008486, A248969, A249246.

%K nonn

%O 0,2

%A _Kival Ngaokrajang_, Sep 06 2015