%I #18 Sep 14 2015 17:10:32
%S 1,3,9,18,18,24,27,33,36,42,45,51,54,60,63,69,72,78,81,87,90,96,99,
%T 105,108,114,117,123,126,132,135,141,144,150,153,159,162,168,171,177,
%U 180,186,189,195,198,204,207,213,216,222
%N Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable vertex of the triangles of the (n-1)-th generation (this is the "vertex to vertex" version); for the even n-th generation use the "side to side" version; a(n) is the number of triangles added in the n-th generation.
%C See a comment on V-V and V-S at A249246.
%C There are a total of 16 combinations as shown in the table below:
%C +-------------------------------------------------------+
%C | Even n-th version V-V S-V V-S S-S |
%C +-------------------------------------------------------+
%C | Odd n-th version |
%C | V-V A008486 A248969 A261951 a(n) |
%C | S-V A261950 A008486 A008486 A261956 |
%C | V-S A249246 A008486 A008486 A261957 |
%C | S-S A261953 A261954 A261955 A008486 |
%C +-------------------------------------------------------+
%C Note: V-V = vertex to vertex, S-V = side to vertex,
%C V-S = vertex to side, S-S = side to side.
%C For n > 4, a(n) = A245094(n+1).
%H Kival Ngaokrajang, <a href="/A261952/a261952.pdf">Illustration of initial terms</a>
%F Conjectures from _Colin Barker_, Sep 10 2015: (Start)
%F a(n) = 3*(1-(-1)^n+6*n)/4 for n>3.
%F a(n) = a(n-1)+a(n-2)-a(n-3) for n>6.
%F G.f.: (3*x^6-3*x^5-6*x^4+7*x^3+5*x^2+2*x+1) / ((x-1)^2*(x+1)).
%F (End)
%o (PARI) {a=18; print1("1, 3, 9, 18, ", a, ", "); for(n=5, 100, if (Mod(n,2)==0, a=a+3, a=a+6); print1(a, ", "))}
%Y Cf. A008486, A248969, A249246, A245094.
%K nonn
%O 0,2
%A _Kival Ngaokrajang_, Sep 06 2015