Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 28 2017 10:24:25
%S 1,1,4,25,210,2205,27720,405405,6756750,126351225,2618916300,
%T 59580345825,1475759335050,39529267903125,1138442915610000,
%U 35078272337233125,1151392703775063750,40106845848164720625,1477620636511331812500,57405561728465240915625
%N Values of |G-hat_1(n)|, a sum involving Stirling numbers of the second kind.
%H Alois P. Heinz, <a href="/A261898/b261898.txt">Table of n, a(n) for n = 0..400</a>
%H H. W. Gould, Harris Kwong, Jocelyn Quaintance, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Kwong/kwong9.html">On Certain Sums of Stirling Numbers with Binomial Coefficients</a>, J. Integer Sequences, 18 (2015), #15.9.6.
%p a:= n-> (m-> abs(add((-1)^k*binomial(2*n+m, n-k)
%p *combinat[stirling2](n+k, k), k=0..n)))(-1):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Sep 06 2015
%t a[n_] := Function[m, Abs @ Sum[(-1)^k*Binomial[2n+m, n-k]*StirlingS2[n+k, k], {k, 0, n}]][-1]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 28 2017, after _Alois P. Heinz_ *)
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Sep 06 2015
%E More terms from _Alois P. Heinz_, Sep 06 2015