Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 30 2016 22:10:02
%S 1,6,16,40,384,576,4096,10240,17408,393216,589824,1081344,16777216,
%T 41943040,71303168,136314880,6442450944,9663676416,17716740096,
%U 34628173824,1099511627776
%N Encoded symmetrical antidiagonal square binary matrices with either 1 or 2 ones.
%C We encode square matrices that have zeros everywhere except the antidiagonal where the antidiagonal is symmetric with either 1 or 2 ones in it. We do this by reading off digits antidiagonally to get a binary number and then convert the number to a base 10 number.
%F a(n) = A261195(2^n).
%F a(n) = 2^(A000217(floor(sqrt(4*n + 1)) - 1)) * (((A262769(floor(n/2)) * 2^((floor(sqrt(4*n + 1)) - 2*A002260(+1))/2)) * (1+(-1)^(floor(sqrt(4*n + 1))))/2) + ((A262777(floor(n/2)) * 2^((floor(sqrt(4*n + 1)) - A158405(+1))/2)) * (1-(-1)^(floor(sqrt(4*n + 1))))/2)).
%e The 3 X 3 matrix
%e 0 0 0
%e 0 1 0
%e 0 0 0
%e gives 000010000. Writing this as a base 10 number gives a(2)=16.
%e The 4 X 4 matrix
%e 0 0 0 0
%e 0 0 1 0
%e 0 1 0 0
%e 0 0 0 0
%e gives 0000000110000000. Writing this as a base 10 number gives a(4)=384.
%e The 5 X 5 matrix
%e 0 0 0 0 0
%e 0 0 0 1 0
%e 0 0 0 0 0
%e 0 1 0 0 0
%e 0 0 0 0 0
%e gives 0000000000010100000000000. Writing this as a base 10 number gives a(7)=10240.
%K nonn
%O 0,2
%A _Eric Werley_, Sep 24 2015