login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + x^(4*k))/(1 + x^k).
14

%I #15 Feb 13 2024 11:40:37

%S 1,-1,0,-1,2,-2,1,-2,4,-4,3,-4,8,-8,6,-9,14,-14,12,-16,24,-25,22,-28,

%T 40,-42,38,-48,65,-68,64,-78,102,-108,104,-124,159,-168,164,-194,242,

%U -256,254,-296,362,-385,386,-444,536,-570,576,-658,782,-832,848,-961

%N Expansion of Product_{k>=1} (1 + x^(4*k))/(1 + x^k).

%H Seiichi Manyama, <a href="/A261734/b261734.txt">Table of n, a(n) for n = 0..10000</a>

%H David J. Hemmer, <a href="https://arxiv.org/abs/2402.03643">Generating functions for fixed points of the Mullineux map</a>, arXiv:2402.03643 [math.CO], 2024.

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 14.

%F a(n) ~ (-1)^n * exp(sqrt(n)*Pi/2) / (4*sqrt(2)*n^(3/4)).

%p seq(coeff(series(mul((1+x^(4*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # _Muniru A Asiru_, Jul 29 2018

%t nmax = 100; CoefficientList[Series[Product[(1 + x^(4*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A081360 (m=2), A109389 (m=3), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

%K sign

%O 0,5

%A _Vaclav Kotesovec_, Aug 30 2015