Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 01 2015 04:21:46
%S 1,-1,0,-1,1,-1,1,-1,2,-1,1,-2,2,-2,2,-3,4,-3,4,-5,5,-6,6,-7,8,-8,9,
%T -9,10,-12,11,-13,15,-16,17,-18,22,-23,23,-27,30,-31,32,-35,40,-40,42,
%U -48,51,-54,57,-63,69,-71,78,-85,90,-97,102,-110,118,-124,133
%N Expansion of Product_{k>=1} (1 + x^(9*k))/(1 + x^k).
%C In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd.
%H Alois P. Heinz, <a href="/A261733/b261733.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)/3) / (2 * 3^(3/4) * n^(3/4)).
%p with(numtheory):
%p a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, -1, 0,
%p -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1]
%p [1+irem(d, 18)], d=divisors(j))*a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..80); # _Alois P. Heinz_, Sep 01 2015
%t nmax = 100; CoefficientList[Series[Product[(1 + x^(9*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A145707 (m=10).
%K sign
%O 0,9
%A _Vaclav Kotesovec_, Aug 30 2015