The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261683 Number of permutations p of {1..2n} such that  p[2k-1] p[2k]
 2, 8, 84, 1632, 51040, 2340480, 147985824, 12338740736, 1311694023168, 173163464017920, 27793189979315200, 5329882370469617664, 1203569385876087300096, 316106247473967737765888, 95541594110304706706657280, 32926404311225961897742172160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The relation between p[2n-1] and p[2n] is arbitrary; hence a(n) = 2*n*A122647(n). a(n) is also (surprisingly) the number of 2 X n whirlpool permutations (see link, also A334518). - Don Knuth, May 06 2020. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..245 Nicolas Basset, Counting and generating permutations in regular classes of permutations, HAL Id: hal-01093994, 2014. D. E. Knuth, Whirlpool Permutations, May 05 2020 FORMULA Basset (2014, Eq. (4)) gives a g.f. a(n) = (2n)! [z^(2n)] 2*sqrt(2)*z*(exp(sqrt(2)*z)-1) / (2+sqrt(2)*z + (2-sqrt(2)*z)*exp(sqrt(2)*z)). - Alois P. Heinz, Sep 06 2015 MAPLE egf:= 2*(x->1/(1-x*tanh(x))-1)(z/sqrt(2)): a:= n-> (2*n)!*coeff(series(egf, z, 2*n+1), z, 2*n): seq(a(n), n=1..20);  # Alois P. Heinz, Sep 06 2015 CROSSREFS Cf. A122647, A334518, A334519. Sequence in context: A295600 A276488 A295764 * A134089 A136647 A306001 Adjacent sequences:  A261680 A261681 A261682 * A261684 A261685 A261686 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 05 2015 EXTENSIONS More terms from Alois P. Heinz, Sep 06 2015 Name corrected by Don Knuth. - N. J. A. Sloane, May 06 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 14 19:48 EDT 2020. Contains 335729 sequences. (Running on oeis4.)