login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squares equal to the difference between two successive primes of the form k^2+2 in the order in which they appear in A056899.
2

%I #33 Sep 22 2015 04:59:54

%S 1,144,1296,3600,176400,156816,2985984,921600,2702736,11696400,

%T 18974736,21566736,17740944,5992704,125888400,7290000,8363664,

%U 12027024,63680400,210830400,13838400,72590400,15116544,15397776,67568400,128595600,80784144,93315600,33039504

%N Squares equal to the difference between two successive primes of the form k^2+2 in the order in which they appear in A056899.

%C Note that all terms after the first are divisible by 144: for n>1 the sequence b(n) = sqrt(a(n)/144) is 1, 3, 5, 35, 33, 144, 80, 137, 285, 363, 387, 351, 204, 935, 225, 241, 289, ..., see A261659.

%C The proof that all terms are == 0 (mod 144) is simple once you realize that the primes == 11 (mod 72), see comment in A056899. - _Robert G. Wilson v_, Sep 03 2015

%H Robert G. Wilson v, <a href="/A261655/b261655.txt">Table of n, a(n) for n = 1..1100</a>

%e A056899(2)- A056899(1) = 3-2 = 1^2;

%e A056899(5)- A056899(4) = 227-83 = 144 = 12^2;

%e A056899(14)- A056899(13) = 12323-11027 = 1296 = 36^2.

%p q:=2:for n from 1 to 10^7 do:p:=n^2+2:if isprime(p) then x:=p-q:q:=p: z:=sqrt(x):if z=floor(z) then printf(`%d, `, x):else fi:fi:od:

%t Select[ Differences[ Select[ Range[0, 1000000], PrimeQ[#^2 + 2] &]^2], IntegerQ@ Sqrt@# &] (* or *)

%t k = 1; p = 3; lst = {1}; While[k < 10000001, q = (6k +3)^2 + 2; If[ PrimeQ@ q, If[ IntegerQ@ Sqrt[q - p], AppendTo[lst, q - p]]; p = q]; k++] (* _Robert G. Wilson v_, Sep 03 2015 *)

%Y Cf. A056899, A216330, A261659.

%K nonn

%O 1,2

%A _Michel Lagneau_, Aug 28 2015