login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the Dirichlet beta function at 1/4.
3

%I #14 Oct 18 2024 16:49:44

%S 5,9,0,7,2,3,0,5,6,4,4,2,4,9,4,7,3,1,8,6,5,9,5,9,1,5,3,5,1,1,5,6,2,0,

%T 5,9,7,9,8,3,6,7,4,1,7,2,3,9,1,1,4,4,0,0,8,2,7,7,1,8,7,6,5,9,3,0,0,5,

%U 8,3,1,8,2,0,6,6,4,5,9,6,0,9,6,9,2,8,7,7,2,6,1,3,4,1,4,2,0,1,1,7,3,9,4

%N Decimal expansion of the Dirichlet beta function at 1/4.

%H G. C. Greubel, <a href="/A261623/b261623.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/DirichletBetaFunction.html">Dirichlet Beta Function</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_beta_function">Dirichlet beta function</a>

%F beta(1/4) = (zeta(1/4, 1/4) - zeta(1/4, 3/4))/sqrt(2).

%e 0.59072305644249473186595915351156205979836741723911440082771876593...

%p evalf(Sum((-1)^n/(2*n+1)^(1/4), n=0..infinity), 120); # _Vaclav Kotesovec_, Aug 27 2015

%t RealDigits[DirichletBeta[1/4],10,103]//First

%o (PARI) beta(x)=(zetahurwitz(x, 1/4)-zetahurwitz(x, 3/4))/4^x

%o beta(1/4) \\ _Charles R Greathouse IV_, Oct 18 2024

%Y Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A261622 (beta(1/3)), A261624 (beta(1/5)).

%K nonn,cons,easy

%O 0,1

%A _Jean-François Alcover_, Aug 27 2015