Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 22 2022 16:26:29
%S 0,1,1,2,3,5,8,13,21,34,55,29,24,53,17,10,27,37,4,41,45,26,11,37,48,
%T 25,13,38,51,29,20,49,9,58,7,5,12,17,29,46,15,1,16,17,33,50,23,13,36,
%U 49,25,14,39,53,32,25,57,22,19,41,0,41,41,22,3,25,28,53
%N a(n) = Fibonacci(n) mod 60.
%C a(n) = A261575(n,0).
%C Periodic with period length 120. - _Ray Chandler_, Sep 23 2015
%H Reinhard Zumkeller, <a href="/A261606/b261606.txt">Table of n, a(n) for n = 0..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Sexagesimal.html">Sexagesimal</a>
%H Wikipedia, <a href="http://www.wikipedia.org/wiki/Sexagesimal">Sexagesimal</a>
%F a(0) = 0, a(1) = 1 and for n > 1: a(n) = (a(n-1) + a(n-2)) mod 60.
%t Mod[Fibonacci[Range[67]], 60] (* _Michael De Vlieger_, Jan 22 2022 *)
%o (Haskell)
%o a261606 n = a261606_list !! n
%o a261606_list = 0 : 1 : map (flip mod 60)
%o (zipWith (+) a261606_list $ tail a261606_list)
%o (PARI) a(n) = fibonacci(n) % 60; \\ _Michel Marcus_, Jan 22 2022
%Y Cf. A000045, A261575, A261607, A003893.
%K nonn,base
%O 0,4
%A _Reinhard Zumkeller_, Sep 09 2015