login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The 3 X 3 X ... X 3 dots problem (3, n times): minimal number of straight lines (connected at their endpoints) required to pass through 3^n dots arranged in a 3 X 3 X ... X 3 grid.
8

%I #76 Jan 31 2024 07:46:05

%S 1,1,4,13,40,121,364,1093,3280,9841,29524,88573,265720,797161,2391484,

%T 7174453,21523360,64570081,193710244,581130733,1743392200,5230176601,

%U 15690529804,47071589413,141214768240,423644304721,1270932914164

%N The 3 X 3 X ... X 3 dots problem (3, n times): minimal number of straight lines (connected at their endpoints) required to pass through 3^n dots arranged in a 3 X 3 X ... X 3 grid.

%C Except for the first term a duplicate of A003462.

%C This is an n-dimensional generalization of the well-known "Nine Dots Problem".

%C Except for n < 2, the a(n) represent "outside the box" solutions, but (for any n) the minimal covering trail C(n) is still inside a box of hyper)-volume 3^n units^n. - _Marco Ripà_, Jul 19 2020

%H M. Ripà, <a href="https://www.researchgate.net/publication/343050221_Solving_the_106_years_old_3k_Points_Problem_with_the_Clockwise-algorithm">Solving the 106 years old 3^k Points Problem with the Clockwise-algorithm</a>, ResearchGate, 2020 (DOI: 10.13140/RG.2.2.34972.92802).

%H M. Ripà, <a href="https://www.researchgate.net/publication/342331014_Solving_the_n_1_n_2_n_3_Points_Problem_for_n_3_6">Solving the n_1 <= n_2 <= n_3 Points Problem for n_3 < 6</a>, ResearchGate, 2020 (DOI: 10.13140/RG.2.2.12199.57769/1).

%H M. Ripà, <a href="http://nntdm.net/volume-20-2014/number-1/59-71/">The rectangular spiral or the n1 X n2 X ... X nk Points Problem</a>, Notes on Number Theory and Discrete Mathematics, 2014, 20(1), 59-71.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Thinking_outside_the_box#Nine_dots_puzzle">Nine dots puzzle</a>

%F a(n) = (3^n - 1)/2 = A003462(n), for n >= 1. - _Marco Ripà_, Jul 19 2020

%e For n=5, a(5) = 121. You cannot touch (the centers of) the 3^5 = 243 points using fewer than 121 straight lines, following the "Nine Dots Puzzle" basic rules.

%t Join[{1}, (3^Range[30]-1)/2] (* _Paolo Xausa_, Jan 31 2024 *)

%Y Cf. A003462, A058992, A225227.

%K nonn

%O 0,3

%A _Marco Ripà_, Aug 24 2015

%E a(4) added by _Marco Ripà_, Aug 06 2018

%E a(3)-a(4) corrected and more terms added by _Marco Ripà_, Jul 19 2020