Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #60 Sep 08 2022 08:46:13
%S 1,1001,1001001,1001001001,1001001001001,1001001001001001,
%T 1001001001001001001,1001001001001001001001,1001001001001001001001001,
%U 1001001001001001001001001001,1001001001001001001001001001001,1001001001001001001001001001001001
%N a(n) = Sum_{k=0..n} 1000^k.
%C A sequence of palindromic numbers.
%H Colin Barker, <a href="/A261544/b261544.txt">Table of n, a(n) for n = 0..333</a> (corrected by Michel Marcus, Jan 19 2019)
%H John Rafael M. Antalan, <a href="https://arxiv.org/abs/1908.06014">A Recreational Application of Two Integer Sequences and the Generalized Repetitious Number Puzzle</a>, arXiv:1908.06014 [math.HO], 2019.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1001,-1000).
%F a(n) = (1000^(n + 1) - 1)/999.
%F a(n) = 1001*a(n-1) - 1000*a(n-2). - _Colin Barker_, Aug 24 2015
%F G.f.: 1 / ((x-1)*(1000*x-1)). - _Colin Barker_, Aug 24 2015
%F E.g.f.: (1/999)*(1000000*exp(1000*x) - exp(x)). - _G. C. Greubel_, Aug 29 2015
%e From _Bruno Berselli_, Aug 25 2015: (Start)
%e a(n) is the binary representation of A023001
%e -------------------------------------------------
%e 1 ........................................... 1
%e 1001 ........................................ 9
%e 1001001 ..................................... 73
%e 1001001001 ................................ 585
%e 1001001001001 ............................ 4681
%e 1001001001001001 ........................ 37449
%e 1001001001001001001 .................... 299593
%e 1001001001001001001001 ................ 2396745
%e 1001001001001001001001001 ............ 19173961, etc.
%e (End)
%t Table[(1000^(n + 1) - 1)/999, {n, 0, 15}]
%t LinearRecurrence[{1001, -1000}, {1, 1001}, 20] (* _Vincenzo Librandi_, Aug 24 2015 *)
%o (PARI) Vec(1 / ((x-1)*(1000*x-1)) + O(x^20)) \\ _Colin Barker_, Aug 24 2015
%o (Magma) [(1000^(n+1)-1)/999: n in [0..30]]; // _Vincenzo Librandi_, Aug 24 2015
%Y Cf. A000533, A002113, A023001.
%Y Subsequence of A033146.
%Y Sums of 100^k: A094028; sums of 10^k: A000042.
%Y Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025.
%K nonn,base,easy
%O 0,2
%A _Ilya Gutkovskiy_, Aug 24 2015