login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261489
Number of partitions of subsets of {1,...,n}, where consecutive integers and the elements in {1, n} are required to be in different parts.
5
1, 2, 4, 8, 25, 82, 313, 1318, 6098, 30603, 165282, 954065, 5853242, 37987146, 259751877, 1864926846, 14016442573, 109985575616, 898948324164, 7637000950875, 67310106587314, 614420757079213, 5799709014601124, 56530981389520624, 568255134674637557
OFFSET
0,2
LINKS
EXAMPLE
a(3) = 8: {}, 1, 2, 3, 1|2, 1|3, 2|3, 1|2|3.
a(4) = 25: {}, 1, 2, 3, 4, 1|2, 1|3, 13, 1|4, 2|3, 2|4, 24, 3|4, 1|2|3, 13|2, 1|2|4, 1|24, 1|3|4, 13|4, 2|3|4, 24|3, 1|2|3|4, 13|2|4, 1|3|24, 13|24.
MAPLE
g:= proc(n, l, t, f) option remember; `if`(n=0, 1,
add(`if`(l>0 and j=l or f=1 and n=1 and j=1, 0,
g(n-1, j, t+`if`(j=t, 1, 0), f)), j=0..t))
end:
a:= n-> `if`(n=0, 1, g(n-1, 0, 1, 0)+g(n-1, 1, 2, 1)):
seq(a(n), n=0..25);
MATHEMATICA
g[n_, l_, t_, f_] := g[n, l, t, f] = If[n==0, 1, Sum[If[l>0 && j==l || f==1 && n==1 && j==1, 0, g[n-1, j, t+If[j==t, 1, 0], f]], {j, 0, t}]]; a[n_] := If[n==0, 1, g[n-1, 0, 1, 0]+g[n-1, 1, 2, 1]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 02 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 21 2015
STATUS
approved