login
Number of binary strings of length n+3 such that the smallest number whose binary representation is not visible in the string is 5.
2

%I #11 Aug 20 2015 15:30:47

%S 0,1,5,15,35,73,144,274,509,931,1685,3027,5409,9628,17088,30261,53497,

%T 94447,166563,293489,516772,909402,1599585,2812479,4943461,8686739,

%U 15261105,26806184,47077920,82669241,145152429,254839087,447378963,785340873,1378536968

%N Number of binary strings of length n+3 such that the smallest number whose binary representation is not visible in the string is 5.

%H Alois P. Heinz, <a href="/A261441/b261441.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,12,-12,10,-6,3,-1).

%F a(n) = A261019(n+3,5).

%F G.f.: -(x^5+2*x^3-1)*x/((x^3-x^2+2*x-1)*(x^3+x-1)*(x-1)^2). - _Alois P. Heinz_, Aug 19 2015

%o (Haskell)

%o a261441 0 = 0

%o a261441 n = a261019' (n + 3) 5

%Y Column k=5 of A261019.

%K nonn,easy

%O 0,3

%A _Reinhard Zumkeller_, Aug 18 2015

%E More terms from _Alois P. Heinz_, Aug 19 2015