Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 12 2021 22:24:48
%S 1,1,2,0,2,1,4,2,5,2,6,2,6,0,4,4,7,2,4,0,6,1,8,4,4,4,10,2,8,2,12,4,8,
%T 5,6,0,14,2,8,2,11,6,6,4,8,2,8,4,8,6,14,0,6,0,12,6,15,4,14,2,14,4,8,8,
%U 12,7,14,0,12,2,16,10,8,4,10,6,14,0,16,4,16
%N Expansion of f(-x^3)^3 * phi(x^6) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%H G. C. Greubel, <a href="/A261426/b261426.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of (1/3) * q^(-1/3) * c(q) * phi(q^6) in powers of q where phi() is a Ramanujan theta function and c() is a cubic AGM function. - _Michael Somos_, Sep 01 2015
%F Expansion of q^(-1/3) * eta(q^3)^3 * eta(q^12)^5 / (eta(q) * eta(q^6)^2 * eta(q^24)^2) in powers of q.
%F Euler transform of period 24 sequence [ 1, 1, -2, 1, 1, 0, 1, 1, -2, 1, 1, -5, 1, 1, -2, 1, 1, 0, 1, 1, -2, 1, 1, -3, ...].
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = (128/3)^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261426.
%F 24 * a(n) = A261394(6*n + 2).
%F a(n) = A261444(2*n). _Michael Somos_, Sep 01 2015
%e G.f. = 1 + x + 2*x^2 + 2*x^4 + x^5 + 4*x^6 + 2*x^7 + 5*x^8 + 2*x^9 + ...
%e G.f. = q + q^4 + 2*q^7 + 2*q^13 + q^16 + 4*q^19 + 2*q^22 + 5*q^25 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 EllipticTheta[ 3, 0, x^6] / QPochhammer[ x], {x, 0, n}];
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^12 + A)^5 / (eta(x + A) * eta(x^6 + A)^2 * eta(x^24 + A)^2), n))};
%Y Cf. A033687, A261394, A261426, A261444.
%K nonn
%O 0,3
%A _Michael Somos_, Aug 18 2015