

A261315


Number of ndigit positive numbers whose digits occur with equal frequency.


2



9, 90, 657, 4788, 27225, 146619, 544329, 2112084, 3447369, 28995255, 9, 1488185631, 9, 73556822205, 38222232057, 3321970172244, 9, 138479121435807, 9, 2209806802214163, 19711054740199689, 28570005, 9, 15574715941421647071, 141378216540777225, 421224309, 9724427617362202602009
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) is divisible by 9.
a(n) = 9 if n > 10 is prime.


LINKS

Robert Israel, Table of n, a(n) for n = 1..919


FORMULA

a(n) = (9/10) * Sum_{j  n, j <= 10} n! * ((n/j)!)^(j) * binomial(10,j).


EXAMPLE

For n = 1 there are the numbers 1 to 9.
For n = 2 there are 9 twodigit numbers of the form dd and 81 with two distinct digits, for a total of 90.
For n = 3 there are 9 numbers of the form ddd and 648 with three distinct digits, for a total of 657.
For n = 4 there are 9 numbers of the form dddd, 243 of with two distinct digits each occurring twice, and 4536 with four distinct digits, for a total of 4788.


MAPLE

seq(9/10*add(n!/(n/j)!^j * binomial(10, j), j = select(`<=`, numtheory:divisors(n), 10)), n=1..30);


CROSSREFS

Cf. A052060.
Sequence in context: A277105 A180289 A210088 * A270242 A054616 A052386
Adjacent sequences: A261312 A261313 A261314 * A261316 A261317 A261318


KEYWORD

nonn,base


AUTHOR

Robert Israel, Aug 14 2015


STATUS

approved



