login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261277
Expansion of q^(-1/2) * (eta(q^3)^8 + 4 * eta(q^6)^8)^(1/2) in powers of q.
2
1, 2, -2, 0, -2, 4, -2, -4, 2, -4, 0, -8, -1, 2, 6, 8, 8, 0, 6, -4, -6, 4, 4, 0, -7, 4, -2, -8, -8, 4, -2, 0, 4, -4, -16, 8, 10, -2, 0, -8, -2, -4, -4, 12, -6, 0, 16, 8, 2, -8, -18, 16, 0, -12, -2, 12, 18, 16, 4, 0, 5, -12, 12, -8, 8, -4, 0, -4, -6, -12, 0, -8
OFFSET
0,2
COMMENTS
It seems that a( (p - 1)/2 ) = 0 if and only if p is in A167860.
LINKS
FORMULA
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = -2 * (-1)^e if e>0, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 72 (t/i)^2 f(t) where q = exp(2 Pi i t).
Convolution square is A261278.
EXAMPLE
G.f. = 1 + 2*x - 2*x^2 - 2*x^4 + 4*x^5 - 2*x^6 - 4*x^7 + 2*x^8 - 4*x^9 - 8*x^11 + ...
G.f. = q + 2*q^3 - 2*q^5 - 2*q^9 + 4*q^11 - 2*q^13 - 4*q^15 + 2*q^17 - 4*q^19 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Sqrt[ QPochhammer[ x^3]^8 + 4 x QPochhammer[ x^6]^8], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sqrt( eta(x^3 + A)^8 + 4 * x * eta(x^6 + A)^8 ), n))};
(Magma) A := Basis( CuspForms( Gamma0(72), 2), 142); A[1] + 2*A[3] - 2*A[4];
CROSSREFS
Sequence in context: A159286 A355837 A372470 * A006462 A278483 A008281
KEYWORD
sign
AUTHOR
Michael Somos, Aug 14 2015
STATUS
approved