login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2)X(6+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00010101 00100101 or 01010101.
1

%I #4 Aug 13 2015 06:38:33

%S 586,758,2948,10382,28540,85506,274100,842884,2548286,7832046,

%T 24162204,74075530,226969292,697051096,2140551114,6567905552,

%U 20155238082,61868865174,189897012544,582806503534,1788751262356,5490189574614

%N Number of (n+2)X(6+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00010101 00100101 or 01010101.

%C Column 6 of A261265.

%H R. H. Hardin, <a href="/A261263/b261263.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +10*a(n-3) +17*a(n-4) +24*a(n-5) +32*a(n-6) +27*a(n-7) +9*a(n-8) -25*a(n-9) -42*a(n-10) +24*a(n-11) +115*a(n-12) +42*a(n-13) -51*a(n-14) -85*a(n-15) -105*a(n-16) +63*a(n-17) +187*a(n-18) -47*a(n-19) -169*a(n-20) +53*a(n-21) +83*a(n-22) -31*a(n-23) -7*a(n-24) +15*a(n-25) -19*a(n-26) +8*a(n-28) -5*a(n-29) +3*a(n-30) -a(n-31) for n>36

%e Some solutions for n=4

%e ..1..0..1..0..1..0..1..0....0..1..0..1..0..1..0..1....0..1..0..0..1..0..0..1

%e ..0..0..0..1..0..1..0..1....0..0..1..0..1..0..1..0....1..0..0..1..0..1..0..0

%e ..1..0..1..0..1..0..0..0....0..1..0..1..0..1..0..1....0..0..1..0..1..0..1..0

%e ..0..1..0..1..0..1..0..1....1..0..1..0..1..0..1..0....0..1..0..1..0..1..0..1

%e ..1..0..0..0..1..0..1..0....0..1..0..1..0..1..0..0....1..0..1..0..1..0..0..0

%e ..0..0..1..0..0..1..0..1....0..0..1..0..0..0..1..0....0..1..0..1..0..1..0..0

%Y Cf. A261265.

%K nonn

%O 1,1

%A _R. H. Hardin_, Aug 13 2015