Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 25 2020 07:15:08
%S 1,10,101,1011,10111,101111,10111111,101111111,101111111011,
%T 10111111101101,101111111011010011,10111111101101001101111,
%U 10111111101101001101111101,1011111110110100110111110101,101111111011010011011111010111,1011111110110100110111110101111
%N Minimal prime concatenation sequence with base 2 and seed 1.
%H Clark Kimberling, <a href="/A261200/b261200.txt">Table of n, a(n) for n = 1..500</a>
%e In base 2, the least prime starting with seed 1 is 10; the least prime starting with 10 is 101; the least prime starting with 101 is 1011. Triangular format:
%e 1
%e 10
%e 101
%e 1011
%e 10111
%e 101111
%e 10111111
%e 101111111
%e 101111111011
%t b = 2; s = {{1}};
%t Do[NestWhile[# + 1 &, 0, ! (PrimeQ[FromDigits[tmp = Join[Last[s], (nn = #; IntegerDigits[nn - Sum[b^n, {n, l = NestWhile[# + 1 &, 1, ! (nn - (Sum[b^n, {n, #}]) < 0) &] - 1}], b, l + 1])], b]]) &];
%t AppendTo[s, tmp], {30}]; Map[FromDigits, s]
%t Map[FromDigits, s] (* A261200 *)
%t Map[FromDigits[#, b] &, s] (* A261201 *)
%t (* _Peter J. C. Moses_, Aug 06 2015 *)
%Y A055011, A261200 and A261201 are all essentially the same sequence.
%K nonn,easy,base
%O 1,2
%A _Clark Kimberling_, Sep 16 2015