login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of set partitions B'_t(n) of {1,2,...,t} into at most n parts, so that no part contains both 1 and t, or both i and i+1 with 1 <= i < t; triangle B'_t(n), t>=0, 0<=n<=t, read by rows.
5

%I #48 Apr 28 2021 21:04:48

%S 1,0,0,0,0,1,0,0,0,1,0,0,1,3,4,0,0,0,5,10,11,0,0,1,11,31,40,41,0,0,0,

%T 21,91,147,161,162,0,0,1,43,274,568,694,714,715,0,0,0,85,820,2227,

%U 3151,3397,3424,3425,0,0,1,171,2461,8824,14851,17251,17686,17721,17722

%N Number of set partitions B'_t(n) of {1,2,...,t} into at most n parts, so that no part contains both 1 and t, or both i and i+1 with 1 <= i < t; triangle B'_t(n), t>=0, 0<=n<=t, read by rows.

%C B'_t(n) is the number of sequences of t non-identity top-to-random shuffles that leave a deck of n cards invariant.

%C B'_t(n) = <chi^t, 1_{Sym_n}> where chi is the degree n-1 constituent of the natural permutation character of the symmetric group Sym_n. This gives a combinatorial interpretation of B'_t(n) using sequences of box moves on Young diagrams.

%C B'_t(t) is the number of set partitions of a set of size t into parts of size at least 2 (A000296); this is also the number of cyclically spaced partitions of a set of size t.

%C B'_t(n) = B'_t(t) if n > t.

%H Alois P. Heinz, <a href="/A261137/b261137.txt">Rows n = 0..140, flattened</a>

%H John R. Britnell and Mark Wildon, <a href="http://arxiv.org/abs/1507.04803">Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D</a>, arXiv:1507.04803 [math.CO], 2015.

%H D. E. Knuth and O. P. Lossers, <a href="http://www.jstor.org/stable/27642185">Partitions of a circular set</a>, Problem 11151 in Amer. Math. Monthly 114 (3), (2007), p 265, E_4.

%F B'_t(n) = Sum_{i=0..n} A261139(t,i).

%e Triangle starts:

%e 1;

%e 0, 0;

%e 0, 0, 1;

%e 0, 0, 0, 1;

%e 0, 0, 1, 3, 4;

%e 0, 0, 0, 5, 10, 11;

%e 0, 0, 1, 11, 31, 40, 41;

%e 0, 0, 0, 21, 91, 147, 161, 162;

%e 0, 0, 1, 43, 274, 568, 694, 714, 715;

%e 0, 0, 0, 85, 820, 2227, 3151, 3397, 3424, 3425;

%e ...

%p g:= proc(t, l, h) option remember; `if`(t=0, `if`(l=1, 0, x^h),

%p add(`if`(j=l, 0, g(t-1, j, max(h,j))), j=1..h+1))

%p end:

%p B:= t-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..t))(g(t, 0$2)):

%p seq(B(t), t=0..12); # _Alois P. Heinz_, Aug 10 2015

%t StirPrimedGF[0, x_] := 1; StirPrimedGF[1, x_] := 0;

%t StirPrimedGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - j*x), {j, 1, n - 1}];

%t StirPrimed[0, 0] := 1; StirPrimed[0, _] := 0;

%t StirPrimed[t_, n_] := Coefficient[Series[StirPrimedGF[n, x], {x, 0, t}], x^t];

%t BPrimed[t_, n_] := Sum[StirPrimed[t, m], {m, 0, n}]

%t (* Second program: *)

%t g[t_, l_, h_] := g[t, l, h] = If[t == 0, If[l == 1, 0, x^h], Sum[If[j == l, 0, g[t - 1, j, Max[h, j]]], {j, 1, h + 1}]];

%t B[t_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, t}] ][g[t, 0, 0]];

%t Table[B[t], {t, 0, 12}] // Flatten (* _Jean-François Alcover_, May 20 2016, after _Alois P. Heinz_ *)

%Y Cf. A000296, A261139.

%Y For columns n=3-8 see: A001045, A006342, A214142, A214167, A214188, A214239.

%K nonn,tabl

%O 0,14

%A _Mark Wildon_, Aug 10 2015