login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal value a(n) of the binary number b(n) obtained by starting from n, sequentially concatenating all binary numbers down to 1 and then sequentially concatenating all binary numbers from 2 up to n.
0

%I #12 Aug 20 2015 16:00:25

%S 1,22,475,20188,1472229,112441134,8415721847,1234163177336,

%T 336405959636873,95454487901599898,26891544907776231851,

%U 7513814442828887530172,2084725487959034609380301,574954374994698424018451678,157752074714160807772190133743,86177704805459827544499089423856

%N Decimal value a(n) of the binary number b(n) obtained by starting from n, sequentially concatenating all binary numbers down to 1 and then sequentially concatenating all binary numbers from 2 up to n.

%F a(n) = binary_to_decimal(concatenate(binary(n), binary(n-1), binary(n-2), ..., 11, 10, 1, 10, 11, ..., binary(n-2), binary(n-1), binary(n)))

%e a(1) = binary_to_decimal(1) = 1;

%e a(2) = binary_to_decimal(10110) = 22;

%e a(3) = binary_to_decimal(111011011) = 475;

%e a(4) = binary_to_decimal(100111011011100) = 20188.

%t Table[d = IntegerDigits[#, 2] & /@ Range@ n; FromDigits[#, 2] &@

%t Flatten[{Flatten@ Reverse@ d, Flatten@ Rest@ d}, 1], {n, 16}] (* _Michael De Vlieger_, Aug 20 2015 *)

%Y Cf. A007942 for a base-10 version.

%Y Cf. A173427 for an inverted ordering of repeated binary numbers.

%K nonn,base

%O 1,2

%A _Umut Uludag_, Aug 10 2015

%E a(11)-a(16) from _Michael De Vlieger_, Aug 20 2015