Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 12 2021 22:24:48
%S 1,2,2,2,0,0,1,2,4,0,0,0,0,4,2,2,0,0,3,2,2,2,0,0,2,2,2,0,0,0,0,2,2,2,
%T 0,0,3,2,4,2,0,0,0,6,2,0,0,0,0,2,4,0,0,0,2,2,2,4,0,0,1,0,2,0,0,0,0,2,
%U 6,2,0,0,2,4,0,2,0,0,4,4,0,0,0,0,0,4,2
%N Expansion of f(x^2, -x^4) * f(x, x^5)^2 / f(-x^12, -x^12) in powers of x where f(, ) is Ramanujan's general theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A261119/b261119.txt">Table of n, a(n) for n = 0..10000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of f(x^2, x^6) * f(x, x^5)^2 / f(x^4, x^8) in powers of x where f(,) is Ramanujan'sgeneral theta function.
%F Expansion of q^(-3/4) * eta(q^2)^3 * eta(q^3)^2 * eta(q^4) * eta(q^24) / (eta(q)^2 * eta(q^6)^2 * eta(q^8)) in powers of q.
%F Euler transform of period 24 sequence [ 2, -1, 0, -2, 2, -1, 2, -1, 0, -1, 2, -2, 2, -1, 0, -1, 2, -1, 2, -2, 0, -1, 2, -2, ...].
%F a(n) = (-1)^n * A257921(n) = A129402(2*n + 1) = A261118(3*n + 2) = A192013(4*n + 3) = A000377(4*n + 3).
%F a(2*n) = A257920(n). a(2*n + 1) = 2 * A259896(n). a(3*n) = A261118(n).
%e G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + x^6 + 2*x^7 + 4*x^8 + 4*x^13 + 2*x^14 + ...
%e G.f. = q^3 + 2*q^7 + 2*q^11 + 2*q^15 + q^27 + 2*q^31 + 4*q^35 + 4*q^55 + ...
%t a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 3}, (-1)^n DivisorSum[ m, KroneckerSymbol[ 12, #] KroneckerSymbol[ -2, m/#] &]]]; (* _Michael Somos_, Dec 22 2016 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^24 + A) / (eta(x + A)^2 * eta(x^6 + A)^2 * eta(x^8 + A)), n))};
%o (PARI) a(n) = my(m = 4*n+3); (-1)^n*sumdiv(m, d, kronecker(12, d) * kronecker(-2, m/d)); \\ _Michel Marcus_, Dec 13 2017
%Y Cf. A000377, A129402, A192013, A257920, A257921, A259896, A261118.
%K nonn
%O 0,2
%A _Michael Somos_, Aug 08 2015