%I #7 Jul 28 2017 08:51:10
%S 1,2,9,40,212,1248,8400,63576,540858,5132564,53952742,623324184,
%T 7855144818,107224120980,1575511525794,24784246515256,415435624535225,
%U 7389692971336602,138992875726543381,2755750468146310688,57433108983590606292
%N Euler transform of (n+1)!.
%F a(n) ~ (n+1)! * (1 + 2/n + 7/n^2 + 33/n^3 + 219/n^4 + 1705/n^5 + 15707/n^6 + 166289/n^7 + 1993141/n^8 + 26727125/n^9 + 397081369/n^10).
%F a(n) ~ n! * n * (1 + 3/n + 9/n^2 + 40/n^3 + 252/n^4 + 1924/n^5 + 17412/n^6 + 181996/n^7 + 2159430/n^8 + 28720266/n^9 + 423808494/n^10).
%p a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
%p (d+1)!, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jul 28 2017
%t nmax=20; CoefficientList[Series[Product[1/(1-x^k)^((k+1)!), {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A107895, A179327.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Aug 08 2015