login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of subsets of {1,...,n}, where consecutive integers are required to be in different parts.
10

%I #44 Sep 10 2024 16:25:14

%S 1,2,4,10,29,97,366,1534,7050,35167,188835,1084180,6618472,42756208,

%T 291120551,2081922515,15590248868,121920095674,993343650912,

%U 8414029179365,73953763887277,673316834487162,6340176007793060,61657373569634586,618445940056365121

%N Number of partitions of subsets of {1,...,n}, where consecutive integers are required to be in different parts.

%C From _Gus Wiseman_, Nov 25 2019: (Start)

%C Conjecture: Also the number of set partitions of {1, ..., n + 1} where, if x and x + 2 belong to the same block, then so does x + 1. For example, the a(0) = 1 through a(3) = 10 set partitions are:

%C {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}

%C {{1},{2}} {{1},{2,3}} {{1},{2,3,4}}

%C {{1,2},{3}} {{1,2},{3,4}}

%C {{1},{2},{3}} {{1,2,3},{4}}

%C {{1,4},{2,3}}

%C {{1},{2},{3,4}}

%C {{1},{2,3},{4}}

%C {{1,2},{3},{4}}

%C {{1,4},{2},{3}}

%C {{1},{2},{3},{4}}

%C (End)

%H Alois P. Heinz, <a href="/A261041/b261041.txt">Table of n, a(n) for n = 0..576</a>

%H Notamathematician et al., <a href="https://mathoverflow.net/q/478446">Generating function for A261041</a>, MathOverflow, 2024.

%F From _Max Alekseyev_, Sep 08 2024: (Start)

%F a(n) = Sum_{k=0..n} A000110(k) * Sum_{j=0..[(n-k)/2]} binomial(k+j-1,j).

%F G.f.: 1/(1-x) * Sum_{k>=0} A000110(k) * (x/(1-x^2))^k. (End)

%e For n=3 the a(3) = 10 partitions are {}, 1, 2, 3, 1|2, 13, 1|3, 2|3, 13|2, 1|2|3.

%e From _Gus Wiseman_, Nov 25 2019: (Start)

%e The a(0) = 1 through a(3) = 10 set partitions:

%e {} {} {} {}

%e {{1}} {{1}} {{1}}

%e {{2}} {{2}}

%e {{1},{2}} {{3}}

%e {{1,3}}

%e {{1},{2}}

%e {{1},{3}}

%e {{2},{3}}

%e {{1,3},{2}}

%e {{1},{2},{3}}

%e (End)

%p g:= proc(n, l, t) option remember; `if`(n=0, 1, add(`if`(l>0

%p and j=l, 0, g(n-1, j, `if`(j=t, t+1, t))), j=0..t))

%p end:

%p a:= n-> g(n, 0, 1):

%p seq(a(n), n=0..30);

%t g[n_, l_, t_] := g[n, l, t] = If[n==0, 1, Sum[If[l>0 && j==l, 0, g[n-1, j, If[j==t, t+1, t]]], {j, 0, t}]]; a[n_] := g[n, 0, 1]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 04 2017, translated from Maple *)

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t Table[Length[Select[Join@@sps/@Subsets[Range[n]],!MemberQ[#,{___,x_,y_,___}/;x+1==y]&]],{n,0,6}] (* _Gus Wiseman_, Nov 25 2019 *)

%o (PARI) a261041(n) = sum(k=0,n, sum(j=0,k,stirling(k,j,2)) * sum(j=0,(n-k)\2, binomial(k+j-1,j))); \\ _Max Alekseyev_, Sep 08 2024

%Y Cf. A000110, A003242, A114901, A247100, A261134, A261489, A261492, A273461, A274174.

%Y Partial sums of A376077.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Aug 09 2015