login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the set of the decimal digits is a subgroup of the multiplicative group (Z/mZ)* where m is the sum of the decimal digits of k.
3

%I #44 Feb 22 2018 16:33:38

%S 11,12,13,14,15,16,17,18,19,21,31,41,51,61,71,81,91,111,124,139,142,

%T 193,214,241,319,391,412,421,913,931,1111,1115,1133,1151,1155,1177,

%U 1199,1248,1284,1313,1331,1379,1397,1428,1482,1511,1515,1551,1717,1739,1771,1793

%N Numbers k such that the set of the decimal digits is a subgroup of the multiplicative group (Z/mZ)* where m is the sum of the decimal digits of k.

%C (Z/mZ)* is the multiplicative group of units of Z/mZ.

%C Let d(1)d(2)...d(q) be the q decimal digits of a number k. The principle of the algorithm is to compute all the products d(i)*d(j) (mod m) for 1 <= i,j <= q, and also the multiplicative inverse of each element such that if x is in the group, then there exists x' in the group where x*x' = 1.

%C The sequence is infinite because the numbers 11, 111, 1111, ... are in the sequence and generate the trivial subgroup {1}.

%C Only zerofree elements of A009996 have to be checked. Terms that match the criterion and permutations of their digits form all terms of this sequence due to commutativity of multiplication. - _David A. Corneth_, Aug 08 2015

%C To reduce cases, only check terms from A009995 (containing a 1 but no 0) for values m from digsum(term) to 81. - _David A. Corneth_, Aug 13 2015

%C Each decimal digit must be relatively prime to the decimal digit sum. - _Tom Edgar_, Aug 17 2015

%H Michel Lagneau and David A. Corneth, <a href="/A261020/b261020.txt">Table of n, a(n) for n = 1..10083</a> (all elements < 10^14, first 268 terms from Michel Lagneau)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FiniteGroup.html">Finite Group</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Finite_group">Finite group</a>

%e 139 is a term because 1+3+9 = 13 and the elements {1, 3, 9} form a subgroup of the multiplicative group (Z/13Z)* with 12 elements. Each element is invertible: 1*1 == 1 (mod 13), 3*9 == 1 (mod 13) and 9*3 == 1 (mod 13). The other numbers of the sequence having the same property with (Z/13Z)* are 139, 193, 319, 391, 913, and 931.

%e 1248 is in the sequence because 1+2+4+8 = 15 and the elements {1, 2, 4, 8} form a subgroup of the multiplicative group (Z/15Z)* with 8 elements: {1,2,4,7,8,11,13,14}.

%p nn:=2000:

%p for n from 1 to nn do:

%p x:=convert(n,base,10):nn0:=length(n):

%p lst1:={op(x),x[nn0]}:n0:=nops(lst1):

%p s:=sum('x[i]', 'i'=1..nn0):lst:={}:

%p if lst1[1]=1 then

%p for j from 1 to n0 do:

%p for l from j to n0 do:

%p p:=irem(lst1[j]*lst1[l],s):lst:=lst union {p}:

%p od:

%p od:

%p if lst=lst1

%p then

%p n3:=nops(lst1):lst2:={}:

%p for c from 1 to n3 do:

%p for d from 1 to n3 do:

%p if irem(lst1[c]*lst1[d], s)=1

%p then

%p lst2:=lst2 union {lst1[c]}:

%p else

%p fi:

%p od:

%p od:

%p if lst2=lst

%p then

%p printf(`%d, `, n):

%p else

%p fi:

%p fi:

%p fi:

%p od:

%o (Sage)

%o def is_group(n):

%o DD=n.digits()

%o digsum=sum(DD)

%o D=Set(DD)

%o if not(1 in D) or 0 in D:

%o return false

%o for x in D:

%o for y in D:

%o if not(gcd(y,digsum)==1):

%o return false

%o if not((x*inverse_mod(y,digsum))%digsum in D):

%o return false

%o return true

%o [n for n in [1..2000] if is_group(n)] # _Tom Edgar_, Aug 17 2015

%Y Cf. A011531, A261021, A261322.

%K nonn,base

%O 1,1

%A _Michel Lagneau_, Aug 07 2015