login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A136439(n) + Catalan(n).
4

%I #29 Apr 15 2024 18:28:39

%S 1,2,5,15,48,160,549,1924,6851,24700,89945,330239,1220884,4540128,

%T 16968958,63701573,240059998,907760348,3443048256,13094812968,

%U 49925646786,190772846082,730451716847,2802033270234,10767028435468,41438212118088,159711845145544,616393788920923,2381898673172602

%N a(n) = A136439(n) + Catalan(n).

%C This is the quantity S_{n-1} as given by a literal reading of Dershowitz and Rinderknecht (2015), Equations (1) and (2). If the lower limit in the right-hand sum in Eq. (1) is changed to "h >= 2", we obtain A136439.

%C a(n) is the total number of levels visited by all Dyck paths of semilength n. - _Alois P. Heinz_, Apr 14 2024

%H Alois P. Heinz, <a href="/A261003/b261003.txt">Table of n, a(n) for n = 0..650</a>

%H N. Dershowitz and C. Rinderknecht, <a href="http://www.jstor.org/stable/10.4169/math.mag.88.3.187">The Average Height of Catalan Trees by Counting Lattice Paths</a>, Math. Mag., 88 (No. 3, 2015), 187-195.

%F a(n) = A000108(n) + A136439(n).

%p # Maple code for Equations (1) and (2) of Dershowitz and Rinderknecht (2015).

%p H:=proc(n,h) local b,k; b:=binomial; add(b(2*n,n+1-k*h)-2*b(2*n,n-k*h)+b(2*n,n-1-k*h),k=1..n+1); end;

%p S1:=n->add(H(n,h),h=1..n+1); [seq(S1(n),n=0..30)];

%t b[x_, y_, h_] := b[x, y, h] = If[x == 0, h, Sum[If[x+j > y, b[x-1, y-j, Max[h, y-j]], 0], {j, Range[-1, Min[1, y]]~Complement~{0}}]];

%t a[n_] := b[2n, 0, 0] + CatalanNumber[n];

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 15 2023, after _Alois P. Heinz_ in A136439 *)

%Y Cf. A000108, A136439.

%Y Row sums of A371928.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Aug 12 2015