Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 27 2023 22:14:54
%S 1,3,8,28,32,36,40,50,56,80,128,176,184,228,324,368,448,472,504,560,
%T 576,664,704,1328,1336,1512,1620,1686,1816,2048,2544,2580,2864,3008,
%U 3064,3540,3776,3832,3888,4024,5184,5744,6048,6904,7096,7128,8192,9216,10264,10456
%N Numbers n such that phi(n') = phi(n)', where phi(n) is the Euler totient function of n and n' is the arithmetic derivative of n.
%H Alois P. Heinz, <a href="/A260961/b260961.txt">Table of n, a(n) for n = 1..1000</a> (first 200 terms from Paolo P. Lava)
%e Arithmetic derivative of 56 is 92 and phi(92) = 44, while phi(56) = 24 and the arithmetic derivative of 24 is 44.
%p with(numtheory): P:=proc(q) local a,b,c,n,p; for n from 1 to q do
%p a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=phi(n);
%p c:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]);
%p if phi(a)=c then print(n); fi; od; end: P(10^9);
%t f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range@ 12000, EulerPhi@ f@ # == f@ EulerPhi@ # &] (* _Michael De Vlieger_, Aug 07 2015, after _Michael Somos_ at A003415 *)
%Y Cf. A000010, A003415, A190402.
%K nonn,easy
%O 1,2
%A _Paolo P. Lava_, Aug 06 2015