login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least positive integer k < prime(n) such that i^2 + j^2 = k^2 for some 0 < i < j with i*j*k a primitive root modulo prime(n), or 0 if no such k exists.
3

%I #5 Aug 05 2015 03:43:15

%S 0,0,0,0,10,0,15,5,5,5,0,17,5,15,5,10,10,26,10,17,5,5,5,5,5,13,15,5,

%T 10,15,15,10,13,13,5,17,5,10,5,10,10,10,25,61,10,13,17,25,5,50,15,13,

%U 17,10,15,5,5,10,17,10,26,10,10,17,5,10,5,5,5,13

%N Least positive integer k < prime(n) such that i^2 + j^2 = k^2 for some 0 < i < j with i*j*k a primitive root modulo prime(n), or 0 if no such k exists.

%C Conjecture: a(n) > 0 for all n > 11. In other words, for any prime p > 31 there are a,b,c among 1,...,p-1 with a^2 + b^2 = c^2 such that a*b*c is a primitive root modulo p.

%H Zhi-Wei Sun, <a href="/A260946/b260946.txt">Table of n, a(n) for n = 1..10000</a>

%e a(5) = 10 since 10^2 = 6^2 + 8^2, and 6*8*10 = 480 is a primitive root modulo prime(5) = 11.

%t SQ[n_]:=IntegerQ[Sqrt[n]]

%t Dv[n_]:=Divisors[Prime[n]-1]

%t Do[Do[If[SQ[k^2-j^2]==False, Goto[aa]];Do[If[Mod[(Sqrt[k^2-j^2]j*k)^(Part[Dv[n],t]),Prime[n]]==1,Goto[aa]];Continue,{t,1,Length[Dv[n]]-1}];Print[n," ",k];Goto[bb];Label[aa];Continue,{k,1,Prime[n]-1},{j,1,k-1}];Print[n," ",0];Label[bb];Continue,{n,1,70}]

%Y Cf. A000040, A260911, A260947.

%K nonn

%O 1,5

%A _Zhi-Wei Sun_, Aug 05 2015