The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260910 Triangle read by rows: Fresenius numbers of n and A077664(n,k), k = 1..n. 3
 -1, 1, 3, 5, 7, 11, 11, 17, 23, 29, 19, 23, 27, 31, 39, 29, 49, 59, 79, 89, 109, 41, 47, 53, 59, 65, 71, 83, 55, 69, 83, 97, 111, 125, 139, 153, 71, 79, 95, 103, 119, 127, 143, 151, 167, 89, 107, 143, 161, 179, 197, 233, 251, 269, 287, 109, 119, 129, 139 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For n > 1: T(n,1) = A028387(n-2). LINKS Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened Eric Weisstein's World of Mathematics, Frobenius Number. Wikipedia, Coin problem FORMULA T(n,k) = (n-1) * A077664(n,k) - n. EXAMPLE . 1: -1 . 2: 1 3 . 3: 5 7 11 . 4: 11 17 23 29 . 5: 19 23 27 31 39 . 6: 29 49 59 79 89 109 . 7: 41 47 53 59 65 71 83 . 8: 55 69 83 97 111 125 139 153 . 9: 71 79 95 103 119 127 143 151 167 . 10: 89 107 143 161 179 197 233 251 269 287 . 11: 109 119 129 139 149 159 169 179 189 199 219 . 12: 131 175 197 241 263 307 329 373 395 439 461 505 . MATHEMATICA row[n_] := Module[{j, k}, Reap[For[j = n+1; k = 1, k <= n, j++, If[CoprimeQ[n, j], Sow[j]; k++]]][[2, 1]]]; T[n_, k_] := (n-1) row[n][[k]] - n; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 21 2021 *) PROG (Haskell) a260910 n k = a260910_tabl !! (n - 1) !! (k-1) a260910_row n = a260910_tabl !! (n-1) a260910_tabl = zipWith (map . sylvester) [1..] a077664_tabl where sylvester u v = u * v - u - v CROSSREFS Cf. A077664, A028387. Sequence in context: A066168 A058024 A215464 * A109908 A372028 A152212 Adjacent sequences: A260907 A260908 A260909 * A260911 A260912 A260913 KEYWORD sign,tabl AUTHOR Reinhard Zumkeller, Aug 04 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 12:32 EDT 2024. Contains 375938 sequences. (Running on oeis4.)