login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260910
Triangle read by rows: Fresenius numbers of n and A077664(n,k), k = 1..n.
3
-1, 1, 3, 5, 7, 11, 11, 17, 23, 29, 19, 23, 27, 31, 39, 29, 49, 59, 79, 89, 109, 41, 47, 53, 59, 65, 71, 83, 55, 69, 83, 97, 111, 125, 139, 153, 71, 79, 95, 103, 119, 127, 143, 151, 167, 89, 107, 143, 161, 179, 197, 233, 251, 269, 287, 109, 119, 129, 139
OFFSET
1,3
COMMENTS
For n > 1: T(n,1) = A028387(n-2).
LINKS
Eric Weisstein's World of Mathematics, Frobenius Number.
Wikipedia, Coin problem
FORMULA
T(n,k) = (n-1) * A077664(n,k) - n.
EXAMPLE
. 1: -1
. 2: 1 3
. 3: 5 7 11
. 4: 11 17 23 29
. 5: 19 23 27 31 39
. 6: 29 49 59 79 89 109
. 7: 41 47 53 59 65 71 83
. 8: 55 69 83 97 111 125 139 153
. 9: 71 79 95 103 119 127 143 151 167
. 10: 89 107 143 161 179 197 233 251 269 287
. 11: 109 119 129 139 149 159 169 179 189 199 219
. 12: 131 175 197 241 263 307 329 373 395 439 461 505 .
MATHEMATICA
row[n_] := Module[{j, k}, Reap[For[j = n+1; k = 1, k <= n, j++, If[CoprimeQ[n, j], Sow[j]; k++]]][[2, 1]]];
T[n_, k_] := (n-1) row[n][[k]] - n;
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 21 2021 *)
PROG
(Haskell)
a260910 n k = a260910_tabl !! (n - 1) !! (k-1)
a260910_row n = a260910_tabl !! (n-1)
a260910_tabl = zipWith (map . sylvester) [1..] a077664_tabl where
sylvester u v = u * v - u - v
CROSSREFS
Sequence in context: A066168 A058024 A215464 * A109908 A372028 A152212
KEYWORD
sign,tabl
AUTHOR
Reinhard Zumkeller, Aug 04 2015
STATUS
approved