login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260828
Primes that contain only the digits (1, 5, 7).
3
5, 7, 11, 17, 71, 151, 157, 557, 571, 577, 751, 757, 1117, 1151, 1171, 1511, 1571, 1777, 5171, 5557, 5711, 5717, 7151, 7177, 7517, 7577, 7717, 7757, 11117, 11171, 11177, 11551, 11717, 11777, 15511, 15551, 17117, 17551, 51151, 51157, 51511, 51517, 51551, 51577
OFFSET
1,1
LINKS
James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019)
MATHEMATICA
Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {1, 5, 7}] == {} &]
PROG
(Magma) [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [1, 5, 7]];
(Python)
from sympy import isprime
from sympy.utilities.iterables import multiset_permutations
def aupton(terms):
n, digits, alst = 0, 1, []
while len(alst) < terms:
mpstr = "".join(d*digits for d in "157")
for mp in multiset_permutations(mpstr, digits):
t = int("".join(mp))
if isprime(t): alst.append(t)
if len(alst) == terms: break
else: digits += 1
return alst
print(aupton(44)) # Michael S. Branicky, May 07 2021
CROSSREFS
Subsequence of A030096. A020453, A020455 and A020467 are subsequences.
Cf. similar sequences listed in A260827.
Cf. A000040.
Sequence in context: A134572 A106954 A027755 * A280651 A089785 A226383
KEYWORD
nonn,easy,base
AUTHOR
Vincenzo Librandi, Aug 02 2015
STATUS
approved