Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Aug 25 2022 04:35:43
%S 0,1,22,117,376,925,1926,3577,6112,9801,14950,21901,31032,42757,57526,
%T 75825,98176,125137,157302,195301,239800,291501,351142,419497,497376,
%U 585625,685126,796797,921592,1060501,1214550,1384801,1572352,1778337,2003926,2250325,2518776
%N a(n) = n^2*(3*n^2 - 1)/2.
%C Pentagonal numbers with square indices.
%C After 0, a(k) is a square if k is in A072256.
%H Bruno Berselli, <a href="/A260810/b260810.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F G.f.: x*(1 + x)*(1 + 16*x + x^2)/(1 - x)^5.
%F a(n) = a(-n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
%F a(n) = A245288(2*n^2).
%F a(n) = A001318(2*n^2-1) with A001318(-1) = 0.
%F From _Amiram Eldar_, Aug 25 2022: (Start)
%F Sum_{n>=1} 1/a(n) = 3 - Pi^2/3 - sqrt(3)*Pi*cot(Pi/sqrt(3)).
%F Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi*cosec(Pi/sqrt(3)) - Pi^2/6 - 3. (End)
%p A260810:=n->n^2*(3*n^2 - 1)/2: seq(A260810(n), n=0..50); # _Wesley Ivan Hurt_, Apr 25 2017
%t Table[n^2 (3 n^2 - 1)/2, {n, 0, 40}]
%t LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 22, 117, 376}, 40] (* _Vincenzo Librandi_, Aug 23 2015 *)
%o (PARI) vector(40, n, n--; n^2*(3*n^2-1)/2)
%o (Sage) [n^2*(3*n^2-1)/2 for n in (0..40)]
%o (Magma) [n^2*(3*n^2-1)/2: n in [0..40]];
%o (Magma) I:=[0,1,22,117,376]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // _Vincenzo Librandi_, Aug 23 2015
%Y Subsequence of A001318 and A245288 (see Formula field).
%Y Cf. A000326, A193218 (first differences).
%Y Cf. A000583 (squares with square indices), A002593 (hexagonal numbers with square indices).
%Y Cf. A232713 (pentagonal numbers with pentagonal indices), A236770 (pentagonal numbers with triangular indices).
%K nonn,easy
%O 0,3
%A _Bruno Berselli_, Jul 31 2015