|
|
A260756
|
|
G.f.: exp( Sum_{n>=1} 2^(n^n) * x^n/n ).
|
|
0
|
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Does the g.f. describe an integer sequence?
The number of digits in the terms begin: [1, 1, 2, 8, 77, 941, 14045, 247911, ...].
|
|
LINKS
|
|
|
EXAMPLE
|
G.f.: A(x) = 1 + 2*x + 10*x^2 + 44739260*x^3 +...
where
log(A(x)) = 2^1*x + 2^4*x^2/2 + 2^27*x^3/3 + 2^256*x^4/4 + 2^3125*x^5/5 + 2^46656*x^6/6 + 2^823543*x^7/7 + 2^16777216*x^8/8 +...+ 2^(n^n)*x^n/n +...
|
|
PROG
|
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 2^(m^m)*x^m/m)+x*O(x^n)), n)}
for(n=0, 7, print1(a(n), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|