login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260756
G.f.: exp( Sum_{n>=1} 2^(n^n) * x^n/n ).
0
1, 2, 10, 44739260, 28948022309329048855892746252171976963317496166410141009864396001978371888518
OFFSET
0,2
COMMENTS
Does the g.f. describe an integer sequence?
The number of digits in the terms begin: [1, 1, 2, 8, 77, 941, 14045, 247911, ...].
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 44739260*x^3 +...
where
log(A(x)) = 2^1*x + 2^4*x^2/2 + 2^27*x^3/3 + 2^256*x^4/4 + 2^3125*x^5/5 + 2^46656*x^6/6 + 2^823543*x^7/7 + 2^16777216*x^8/8 +...+ 2^(n^n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 2^(m^m)*x^m/m)+x*O(x^n)), n)}
for(n=0, 7, print1(a(n), ", "))
CROSSREFS
Sequence in context: A057095 A119189 A309862 * A252707 A288848 A374945
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 30 2015
STATUS
approved