login
Number of prime juggling patterns of period n using 2 balls.
4

%I #25 May 02 2017 22:17:18

%S 1,2,5,10,23,48,105,216,467,958,2021,4146,8631,17604,36377,73876,

%T 151379,306882,625149,1263294,2563895,5169544,10454105,21046800,

%U 42451179,85334982,171799853,344952010,693368423,1391049900,2792734257

%N Number of prime juggling patterns of period n using 2 balls.

%C A juggling pattern is prime if the closed walk corresponding to the pattern in the juggling state graph is a cycle.

%H Steve Butler, <a href="/A260744/b260744.txt">Table of n, a(n) for n = 1..135</a>

%H Esther Banaian, Steve Butler, Christopher Cox, Jeffrey Davis, Jacob Landgraf, Scarlitte Ponce, <a href="http://arxiv.org/abs/1508.05296">Counting prime juggling patterns</a>, arXiv:1508.05296 [math.CO], 2015.

%H Fan Chung and R. L. Graham, <a href="http://www.jstor.org/stable/27642443">Primitive juggling sequences</a>, American Mathematical Monthly 115 (2008), 185-194.

%e In siteswap notation, the prime juggling pattern(s) of length one is 2; of length two are 31 and 40; of length three are 330, 411, 420, 501, 600.

%Y Cf. A260745, A260746, A260752.

%K nonn

%O 1,2

%A _Scarlitte Ponce_, Jul 30 2015