Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Nov 18 2015 11:49:10
%S 0,1,3,6,10,16,21,29,36,46,55,68,78,93,105,122,136,156,171,193,210,
%T 234,253,280,300,329,351,382,406,440,465,501,528,566,595,636,666,709,
%U 741,786,820,868,903,953,990,1042,1081,1136,1176,1233,1275,1334,1378
%N a(2n) = n*(2*n+1), a(2n+7) = a(2n+1) + 12*n + 28, with a(1)=1, a(3)=6, a(5)=16.
%C Conjecture: this sequence is 0 followed by A264041.
%C After 3, if a(n) is prime then n == 1 (mod 6).
%C a(n) is a square for n = 0, 1, 5, 8, 145, 288, 1777, 6533, 9800, 168097, 332928, 2051425, 7539845, ...
%H Colin Barker, <a href="/A260708/b260708.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,0,1,-1,-1,1).
%F From _Colin Barker_, Nov 17 2015: (Start)
%F G.f.: x*(1 + 2*x + 2*x^2 + 2*x^3 + 3*x^4 + x^5 + x^6) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
%F a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8. (End)
%F a(2*k) = A000217(2*k) by definition; for odd indices:
%F a(6*k+1) = 18*k^2 + 10*k + 1,
%F a(6*k+3) = 2*(9*k^2 + 11*k + 3),
%F a(6*k+5) = 2*(k + 1)*(9*k + 8), that is A178574.
%F a(n) = A260699(n) + A008615(n).
%F a(n) = n*(n + 1)/2 + (1 - (-1)^n)*floor(n/6 + 1/3)/2. [_Bruno Berselli_, Nov 18 2015]
%e a(0) = 0*1 = 0,
%e a(1) = 1,
%e a(2) = 1*3 = 3,
%e a(3) = 6,
%e a(4) = 2*5 = 10,
%e a(5) = 16,
%e a(6) = 3*7 = 21,
%e a(7) = a(1) +12*0 +28 = 29, etc.
%t LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 1, 3, 6, 10, 16, 21, 29, 36}, 50] (* _Bruno Berselli_, Nov 18 2015 *)
%o (PARI) concat(0, Vec(-x*(x^6+x^5+3*x^4+2*x^3+2*x^2+2*x+1)/((x-1)^3*(x+1)^2*(x^2-x+1)*(x^2+x+1)) + O(x^100))) \\ _Colin Barker_, Nov 18 2015
%o (Sage) [n*(n+1)/2+(1-(-1)^n)*floor(n/6+1/3)/2 for n in (0..60)] # _Bruno Berselli_, Nov 18 2015
%Y Cf. A000217, A008615, A014105, A260160, A260699, A264041.
%K nonn,easy
%O 0,3
%A _Paul Curtz_, Nov 17 2015
%E Edited by _Bruno Berselli_, Nov 18 2015