Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 16 2023 12:02:12
%S 1,2,4,7,13,24,45,84,158,298,566,1079,2066,3966,7635,14730,28484,
%T 55188,107130,208294,405594,790812,1543766,3016923,5901858,11556244,
%U 22647431,44418613,87182680,171234318,336532357,661788956,1302124526,2563365624,5048704640
%N Number of binary words of length n such that for every prefix the number of occurrences of subword 101 is larger than or equal to the number of occurrences of subword 010.
%H Alois P. Heinz, <a href="/A260668/b260668.txt">Table of n, a(n) for n = 0..1000</a>
%e a(5) = 2^5 - 8 = 24: 00000, 00001, 00011, 00110, 00111, 01100, 01101, 01110, 01111, 10000, 10001, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111. These 8 words are not counted: 00010, 00100, 00101, 01000, 01001, 01010, 01011, 10010.
%p b:= proc(n, t, c) option remember; `if`(c<0, 0, `if`(n=0, 1,
%p b(n-1, [2, 4, 6, 4, 6, 4, 6][t], c-`if`(t=5, 1, 0))+
%p b(n-1, [3, 5, 7, 5, 7, 5, 7][t], c+`if`(t=6, 1, 0))))
%p end:
%p a:= n-> b(n, 1, 0):
%p seq(a(n), n=0..40);
%p # second Maple program:
%p a:= proc(n) option remember; `if`(n<6, [1, 2, 4, 7, 13, 24][n+1],
%p ((680+1441*n-444*n^2+35*n^3) *a(n-1)
%p -(4*(-112+625*n-179*n^2+14*n^3)) *a(n-2)
%p +(2*(1521-656*n+63*n^2)) *a(n-3)
%p +(2*(-9442+5295*n-947*n^2+56*n^3)) *a(n-4)
%p -(4*(-6721+3413*n-591*n^2+35*n^3)) *a(n-5)
%p +(4*(2*n-11))*(7*n^2-79*n+254) *a(n-6)
%p )/((n+1)*(7*n^2-93*n+340)))
%p end:
%p seq(a(n), n=0..40);
%t b[n_, t_, c_] := b[n, t, c] = If[c < 0, 0, If[n == 0, 1,
%t b[n - 1, {2, 4, 6, 4, 6, 4, 6}[[t]], c - If[t == 5, 1, 0]] +
%t b[n - 1, {3, 5, 7, 5, 7, 5, 7}[[t]], c + If[t == 6, 1, 0]]]];
%t a[n_] := b[n, 1, 0];
%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Sep 16 2023, after _Alois P. Heinz_ *)
%Y Cf. A118430, A164146, A255386, A260505, A260697, A303430.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Nov 14 2015