login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260630
Numerators of first derivatives of Catalan numbers (as continuous functions of n).
2
-1, 1, 5, 59, 449, 1417, 16127, 429697, 437705, 7549093, 145103527, 146489197, 3396112211, 2442184933, 7369048679, 429556076057, 13374954901367, 13427048535167, 94315062045929, 3500487562166393, 3510273150915593, 144285489968702713, 6218562602767668259
OFFSET
0,3
COMMENTS
Let C(n) = 4^n*Gamma(n+1/2)/(sqrt(Pi)*Gamma(n+2)), then C'(n) = C(n)*(H(n-1/2) - H(n+1) + log(4)), where H(n) = Sum_{k>=1} (1/k-1/(n+k)) are harmonic numbers.
LINKS
FORMULA
a(n) = numerator(d(n)), where d(n) satisfies recurrence: d(0) = -1, d(1) = 1/2, (n+1)^2*d(n) = 2*(4*n^2-2*n-1)*d(n-1) - 4*(2*n-3)^2*d(n-2).
EXAMPLE
For n = 3, C'(3) = 59/12, so a(3) = numerator(59/12) = 59.
MATHEMATICA
Numerator@FunctionExpand@Table[CatalanNumber'[n] , {n, 0, 22}]
CROSSREFS
Cf. A260631 (denominators).
Sequence in context: A362535 A112461 A222585 * A317893 A106105 A178003
KEYWORD
sign,frac
AUTHOR
STATUS
approved