Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Jul 17 2016 09:25:44
%S 1,1,12,2,1,1,3,11,1,1,7,9,1,2,10,4,2,1,1,6,8,3,3,1,9,3,1,1,18,3,1,5,
%T 7,2,2,1,4,8,2,14,1,1,6,17,2,6,1,4,6,1,1,2,2,3,7,1,13,6,1,4,16,5,16,1,
%U 5,31,35,3,5,2,1,2,3,1,1,2,6,1,1,12,5,1,2
%N Let b(k, n) = number obtained when the map x->A002808(x) is applied k times to n; a(n) is the smallest k such that b(k, n) + 1 is prime.
%C a(n) is also the smallest value of k at which b(k, n+1) - b(k, n) > 1.
%H Jon E. Schoenfield, <a href="/A260621/b260621.txt">Table of n, a(n) for n = 1..10000</a>
%e When n = 3, writing Composite(x) for A002808(x):
%e 1. Composite(3) = 8. 8 + 1 = 9 = 3^2. 9 is not prime.
%e 2. Composite(8) = 15. 15 + 1 = 16 = 2^4. 16 is not prime.
%e 3. Composite(15) = 25. 25 + 1 = 26 = 2*13. 26 is not prime.
%e 4. Composite(25) = 38. 38 + 1 = 39 = 3*13. 39 is not prime.
%e 5. Composite(38) = 55. 55 + 1 = 56 = 2^3*7. 56 is not prime.
%e 6. Composite(55) = 77. 77 + 1 = 78 = 2*3*13. 78 is not prime.
%e 7. Composite(77) = 105. 105 + 1 = 106 = 2*53. 106 is not prime.
%e 8. Composite(105) = 140. 140 + 1 = 141 = 3*47. 141 is not prime.
%e 9. Composite(140) = 183. 183 + 1 = 184 = 2^3*23. 184 is not prime.
%e 10. Composite(183) = 235. 235 + 1 = 236 = 2^2*59. 236 is not prime.
%e 11. Composite(235) = 298. 298 + 1 = 299 = 13*23. 299 is not prime.
%e 12. Composite(298) = 372. 372 + 1 = 373. 373 is prime.
%e --------------------------------------------------------------
%e Since the composite function was applied 12 times, a(3)=12.
%t c = Select[Range[10^5], CompositeQ]; Table[k = 1; While[! PrimeQ[Nest[c[[#]] &, n, k] + 1], k++]; k, {n, 120}] (* _Michael De Vlieger_, Jul 15 2016 *)
%Y Primes and nonprimes: A000040, A002808, A008578, A018252.
%Y a(1) = p, a(n+1) = a(n)-th composite number: A006508, A022450, A022451, A025010, A025011, A059407, A059408.
%Y Composites with order n > 1: A050435, A050436, A050438, A050439, A050440.
%Y Composites with order n = b, n >= 1: A022449.
%Y Composites with prime subscripts: A065858.
%Y Composites without prime subscripts: A175251.
%Y Order of compositeness: A059981, A236536.
%Y Prime(n)-1: A006093.
%K nonn
%O 1,3
%A _Matthew Campbell_, Sep 25 2015
%E Terms from a(12) onward from _Jon E. Schoenfield_, Sep 27 2015