Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Jan 01 2024 19:11:12
%S 1,11,72,367,1630,6680,26082,98870,368045,1354850,4953503,18035279,
%T 65499031,237511321,860471110,3115667369,11277816388,40814611818,
%U 147692103728,534404499040,1933597628291,6996040095316,25312367524557,91581960107817,331348634005165
%N Number of ways to place 2n rooks on an n X n board, with 2 rooks in each row and each column, multiple rooks in a cell allowed, and exactly 2 rooks below the main diagonal.
%C a(n) is the number of minimal multiplex juggling patterns of period n using exactly 2 balls when we can catch/throw up to 2 balls at a time. (Minimal in the sense that each of the n throws is between 0 and n-1.)
%H Colin Barker, <a href="/A260585/b260585.txt">Table of n, a(n) for n = 2..1000</a>
%H Esther M. Banaian, <a href="http://digitalcommons.csbsju.edu/honors_thesis/24">Generalized Eulerian Numbers and Multiplex Juggling Sequences</a>, (2016). All College Thesis Program. Paper 24.
%H E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce <a href="http://arxiv.org/abs/1508.03673">A generalization of Eulerian numbers via rook placements</a>, arXiv:1508.03673 [math.CO], 2015.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (12,-59,155,-236,209,-100,20).
%F G.f.: -(5*x^6 - 3*x^5 - x^4 - x^3 + x^2)/(20*x^7 - 100*x^6 + 209*x^5 - 236*x^4 + 155*x^3 - 59*x^2 + 12*x - 1).
%F a(n) = 12*a(n-1) - 59*a(n-2) + 155*a(n-3) - 236*a(n-4) + 209*a(n-5) - 100*a(n-6) + 20*a(n-7). - _Wesley Ivan Hurt_, Jan 01 2024
%t CoefficientList[Series[-(5*x^4 - 3*x^3 - x^2 - x + 1)/(20*x^7 - 100*x^6 + 209*x^5 - 236*x^4 + 155*x^3 - 59*x^2 + 12*x - 1), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Aug 16 2015 *)
%o (PARI) Vec(-(5*x^6 - 3*x^5 - x^4 - x^3 + x^2)/(20*x^7 - 100*x^6 + 209*x^5 - 236*x^4 + 155*x^3 - 59*x^2 + 12*x - 1) + O(x^40)) \\ _Michel Marcus_, Aug 17 2015
%Y Column k=2 of A269742.
%Y Cf. A260575, A260582, A260583, A260584, A260727.
%K nonn
%O 2,2
%A _Jeffrey Davis_, Jul 29 2015