login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260583
Number of ways to place 3n rooks on an n X n board, 3 rooks in each row and each column, multiple rooks in an allowed cell, and exactly 4 rooks below the main diagonal.
7
11, 595, 14679, 253247, 3564803, 44226950, 505572550, 5473391465, 57122380066, 581477852342, 5819301681925, 57564437594318, 564911137682637, 5513703983635512, 53616132982114742, 520057429817203110, 5035740328012627416, 48704838658567681135
OFFSET
3,1
COMMENTS
a(n) is the number of minimal multiplex juggling patterns of period n using exactly 4 balls when we can catch/throw up to 3 balls at a time. (Minimal in the sense that the throw heights are between 0 and n-1.)
LINKS
E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
FORMULA
G.f.: -(24558000*x^24 - 221169800*x^23 + 1030045255*x^22 - 3270869391*x^21 + 7705144467*x^20 - 13843184523*x^19 + 19209151138*x^18 - 20800159606*x^17 + 17768204859*x^16 - 12126221923*x^15 + 6718636422*x^14 - 3086566305*x^13 + 1204914514*x^12 - 407103232*x^11 + 118646908*x^10 - 28836372*x^9 + 5505383*x^8 - 758705*x^7 + 65305*x^6 - 2162*x^5 - 131*x^4 + 11*x^3)/(133600000*x^25 - 1875920000*x^24 + 12500686000*x^23 - 52604444000*x^22 + 156920670600*x^21 - 353103818000*x^20 + 622718972395*x^19 - 882777307660*x^18 + 1023713051333*x^17 - 983132187597*x^16 + 788634518440*x^15 - 531447118763*x^14 + 301890662895*x^13 - 144761728498*x^12 + 58568440406*x^11 - 19945788669*x^10 + 5692551701*x^9 - 1352405718*x^8 + 264899104*x^7 - 42210805*x^6 + 5370925*x^5 - 531418*x^4 + 39303*x^3 - 2039*x^2 + 66*x - 1).
CROSSREFS
Column k=4 of A269743.
Sequence in context: A263184 A370087 A288326 * A079915 A185656 A142738
KEYWORD
nonn
AUTHOR
Esther Banaian, Jul 29 2015
STATUS
approved