login
A260494
Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00000011 or 00001011.
1
48, 83, 218, 464, 722, 1600, 3446, 6277, 12596, 26271, 51082, 100763, 204716, 406841, 804806, 1614143, 3223294, 6404160, 12784652, 25529935, 50847034, 101384899, 202319592, 403339059, 804133704, 1603982398, 3198547326, 6377529472
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-3) + 4*a(n-4) + 4*a(n-5) + 4*a(n-6) + 4*a(n-7) + 3*a(n-8) + 2*a(n-9) + 3*a(n-10) + 2*a(n-11) + a(n-12) for n>14.
Empirical g.f.: x*(48 + 83*x + 218*x^2 + 272*x^3 + 198*x^4 + 204*x^5 + 194*x^6 + 137*x^7 + 104*x^8 + 126*x^9 + 82*x^10 + 26*x^11 - 6*x^12 - 2*x^13) / (1 - 4*x^3 - 4*x^4 - 4*x^5 - 4*x^6 - 4*x^7 - 3*x^8 - 2*x^9 - 3*x^10 - 2*x^11 - x^12). - Colin Barker, Dec 29 2018
EXAMPLE
Some solutions for n=4:
..0..1..0....0..0..0....1..1..0....0..0..1....1..0..0....0..0..0....1..0..0
..0..0..1....1..1..0....0..0..0....0..0..1....1..1..0....0..1..1....0..1..0
..0..0..1....0..0..0....1..0..0....0..0..0....0..1..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..1..1....0..0..0....0..1..0....0..0..0....0..1..0....1..0..0
..1..1..0....0..0..0....0..1..1....1..1..0....0..1..0....0..1..1....1..0..1
CROSSREFS
Column 1 of A260501.
Sequence in context: A260834 A260760 A260501 * A039426 A043249 A044029
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 27 2015
STATUS
approved