login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260494
Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00000011 or 00001011.
1
48, 83, 218, 464, 722, 1600, 3446, 6277, 12596, 26271, 51082, 100763, 204716, 406841, 804806, 1614143, 3223294, 6404160, 12784652, 25529935, 50847034, 101384899, 202319592, 403339059, 804133704, 1603982398, 3198547326, 6377529472
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-3) + 4*a(n-4) + 4*a(n-5) + 4*a(n-6) + 4*a(n-7) + 3*a(n-8) + 2*a(n-9) + 3*a(n-10) + 2*a(n-11) + a(n-12) for n>14.
Empirical g.f.: x*(48 + 83*x + 218*x^2 + 272*x^3 + 198*x^4 + 204*x^5 + 194*x^6 + 137*x^7 + 104*x^8 + 126*x^9 + 82*x^10 + 26*x^11 - 6*x^12 - 2*x^13) / (1 - 4*x^3 - 4*x^4 - 4*x^5 - 4*x^6 - 4*x^7 - 3*x^8 - 2*x^9 - 3*x^10 - 2*x^11 - x^12). - Colin Barker, Dec 29 2018
EXAMPLE
Some solutions for n=4:
..0..1..0....0..0..0....1..1..0....0..0..1....1..0..0....0..0..0....1..0..0
..0..0..1....1..1..0....0..0..0....0..0..1....1..1..0....0..1..1....0..1..0
..0..0..1....0..0..0....1..0..0....0..0..0....0..1..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..1..1....0..0..0....0..1..0....0..0..0....0..1..0....1..0..0
..1..1..0....0..0..0....0..1..1....1..1..0....0..1..0....0..1..1....1..0..1
CROSSREFS
Column 1 of A260501.
Sequence in context: A260834 A260760 A260501 * A039426 A043249 A044029
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 27 2015
STATUS
approved