login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Complement of the Beatty sequence for e^(1/Pi) = A179706.
3

%I #20 Jul 17 2024 04:18:53

%S 3,7,11,14,18,22,25,29,33,36,40,44,47,51,55,58,62,66,69,73,77,80,84,

%T 88,91,95,99,102,106,110,113,117,121,124,128,132,135,139,143,146,150,

%U 154,157,161,165,168,172,176,179,183,187,190,194,198

%N Complement of the Beatty sequence for e^(1/Pi) = A179706.

%H Karl V. Keller, Jr., <a href="/A260484/b260484.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/e.html">e</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Pi.html">Pi</a>.

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>.

%F a(n) = floor(n*e^(1/Pi)/(e^(1/Pi)-1)).

%e For n = 5, floor(5*e^(1/Pi)/(e^(1/Pi)-1)) = 18.

%t Floor[Range[100]/(1 - Exp[-1/Pi])] (* _Paolo Xausa_, Jul 17 2024 *)

%o (Python)

%o from sympy import E, pi, floor

%o for n in range(1,101): print(floor(n*E**(1/pi)/(E**(1/pi)-1)), end=', ')

%o (PARI) vector(80, n, floor(n*exp(1/Pi)/(exp(1/Pi)-1))) \\ _Michel Marcus_, Aug 05 2015

%Y Cf. A179706 (e^(1/Pi)), A260483 (complement).

%K nonn

%O 1,1

%A _Karl V. Keller, Jr._, Jul 26 2015