login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Square array T(n,m) read by antidiagonals, T(n,m) is the number of (m,n)-parking functions.
2

%I #21 Nov 30 2015 10:35:42

%S 1,1,1,1,3,1,1,3,4,1,1,5,16,11,1,1,5,16,27,16,1,1,7,25,125,81,42,1,1,

%T 7,49,125,256,378,64,1,1,9,49,243,1296,1184,729,163,1,1,9,64,343,1296,

%U 3125,4096,2187,256,1,1,11,100,729,2401,16807,15625,27213,9529,638,1

%N Square array T(n,m) read by antidiagonals, T(n,m) is the number of (m,n)-parking functions.

%C T(n,2) appears to be A027306(n).

%H Alois P. Heinz, <a href="/A260419/b260419.txt">Antidiagonals n = 1..141, flattened</a>

%H Jean-Christophe Aval, François Bergeron, <a href="http://arxiv.org/abs/1503.03991">Interlaced rectangular parking functions</a>, arXiv:1503.03991 [math.CO], 2015.

%F T(n,m) = m^(n-1), if m and n are coprime (see Lemma in Aval & Bergeron link).

%e Table starts (see Table 1 in Aval & Bergeron link):

%e n/m 1 2 3 4 5

%e ------------------------------

%e 1 |1, 1, 1, 1, 1, ...

%e 2 |1, 3, 3, 5, 5, ...

%e 3 |1, 4, 16, 16, 25, ...

%e 4 |1, 11, 27, 125, 125, ...

%e 5 |1, 16, 81, 256, 1296, ...

%e 6 |...

%Y Cf. A071201.

%K nonn,tabl

%O 1,5

%A _Michel Marcus_, Jul 25 2015

%E More terms from _Alois P. Heinz_, Nov 30 2015