login
A260335
Prime determinants of forms with class number > 2.
1
79, 223, 359, 439, 443, 499, 659, 727, 839, 1087, 1091, 1171, 1223, 1327, 1367, 1523, 1567, 1627, 1787, 1811, 1847, 1907, 1987, 2027, 2099, 2143, 2207, 2251, 2399, 2459, 2467, 2543, 2659, 2711, 2971, 3023, 3163, 3251, 3391, 3719, 3739, 3803, 3967, 4139, 4159, 4271
OFFSET
1,1
COMMENTS
Also primes p == 3 (mod 4) such that Z[sqrt(p)] = Z[x]/(x^2 - p) is not a unique factorization domain (or equivalently, not a principal ideal domain). - Jianing Song, Feb 17 2021
LINKS
M. Suryanarayana, Positive determinants of binary quadratic forms whose class-number is 2, Proceedings of the Indian Academy of Sciences. Section A, 2 (1935), 178-179.
PROG
(PARI) isA260335(p) = isprime(p) && (p%4==3) && quadclassunit(4*p)[1] > 1 \\ Jianing Song, Feb 17 2021
CROSSREFS
Cf. A002052.
Sequence in context: A142198 A089686 A278837 * A257933 A258098 A141964
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Jul 27 2015
EXTENSIONS
More terms from Jianing Song, Feb 17 2021
STATUS
approved