login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of generalized Bernoulli number B_n^{(n-1)}.
1

%I #11 Jan 25 2020 03:49:27

%S 6,2,10,1,84,4,90,5,44,4,5460,70,360,24,102,1,1596,28,1980,66,2760,40,

%T 81900,273,1512,56,1160,20,114576,1232,117810,1785,420,4,109668,494,

%U 936,24,27060

%N Denominator of generalized Bernoulli number B_n^{(n-1)}.

%H N. E. Nørlund, <a href="http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN373206070">Vorlesungen ueber Differenzenrechnung</a> Springer 1924, p. 461.

%H N. E. Nörlund, <a href="/A001896/a001896_1.pdf">Vorlesungen über Differenzenrechnung</a>, Springer-Verlag, Berlin, 1924; page 461 [Annotated scanned copy of pages 144-151 and 456-463]

%t a[n_] := Integrate[(n-t-1)*Pochhammer[t-n+2, n-1], {t, 0, 1}]*(n-1) // Denominator;

%t a /@ Range[2, 40] (* _Jean-François Alcover_, Jan 24 2020, from the formula used in the bisections *)

%Y Cf. A260328.

%K nonn,frac

%O 2,1

%A _N. J. A. Sloane_, Jul 25 2015

%E More terms from _Jean-François Alcover_, Jan 25 2020