login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2) X (2+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00000011 or 00001001.
1

%I #8 Dec 29 2018 07:08:22

%S 104,201,544,1145,1524,3591,8550,13055,24762,60761,108910,183673,

%T 423938,858369,1438728,2990881,6452304,11431783,21757610,47174513,

%U 89535600,163551107,342222086,684851725,1254030304,2502106475,5132607276

%N Number of (n+2) X (2+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00000011 or 00001001.

%H R. H. Hardin, <a href="/A260288/b260288.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-2) + 6*a(n-3) + 4*a(n-4) - 5*a(n-5) - 12*a(n-6) + 8*a(n-7) + a(n-8) - 11*a(n-9) + 3*a(n-10) for n>12.

%F Empirical g.f.: x*(104 + 201*x + 440*x^2 + 320*x^3 - 642*x^4 - 1102*x^5 + 233*x^6 + 40*x^7 - 889*x^8 - 7*x^9 + 56*x^10 + 6*x^11) / (1 - x^2 - 6*x^3 - 4*x^4 + 5*x^5 + 12*x^6 - 8*x^7 - x^8 + 11*x^9 - 3*x^10). - _Colin Barker_, Dec 29 2018

%e Some solutions for n=4:

%e ..1..1..0..0....1..1..0..0....1..0..0..0....1..0..0..1....0..1..0..0

%e ..0..1..0..0....0..1..0..0....0..1..1..0....0..0..1..1....0..1..0..0

%e ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0

%e ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....1..0..0..0

%e ..0..1..0..0....1..1..0..0....0..0..1..1....0..0..1..1....0..0..0..1

%e ..1..0..0..1....1..0..0..0....0..0..0..1....1..0..0..1....0..0..0..0

%Y Column 2 of A260294.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 22 2015